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PREFACE

The title of the report deserves some explanatlon.‘ The sponsoring
Agency, the Guidaoce, Control and Information System D1v151on of NASA,
Washington, D.C., was interested in knowing.about a hardware system pro-
'gramed'in the‘form of finite-state machines that was developed at the Smith—
sonian Astrophysical Observatory,'and gave this‘contract with this title,
The opportunitf has been taken to.study further and document the approach_
used. The result of the work can be properly labeled as ‘an "organizable"
computer. The capability of this computer to be organized is such that
undoubtedly 1t would significantly'fecilitate'the establishment of "self-
organizing" systems, as soon as proper programing systems are added to it,
However,'ﬁo work could be oade;‘in the limits:of this contract, on self-

organizing programs, although determined ﬁrograﬁs are amply documented,

"Self Organization" is not a clearcut notion. A1l complex systems
have some degree of self—organization; However, the interpretation to be
assumed here is that taken in the context'of'artificial intelligence:' the
development of means for performing given tasks, in relation to an environ—
ment, Essentlal to this approach is the establishment of criteria for
evaluatlng performance. In this sense, self-organization has attributes of
thinkiog. Turin (1950) in his "Can a machine think?" conjectured that a pos-
gible computer (arprojection of the Manchester“compﬁter of that time), fur-~
nished with enocugh meﬁory and programs, could produce results undistinguish—
able from those of human thinkiog. This shoﬁs that a self-organizing system
has two main components: an organizable physical part, and a'programing
part, Different emphasie can be given to either of the two parts. This re-
port presents the organizable part in the form of a programable hardware
and its programing language. The program part for the self-organization can

be considered as a continuation of the present work,
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‘Chapter 1
Motivation for « New Approach:

1.1 UNSATISFACTORY ASPECTS IN THE USE OF COMPUTERS

Every year we become accustomed to ‘seeing computers increase their
speed ‘their capac1ty, and thelr endowment of automatic procedures. Reli-
ability is not of concern any longer; om the contrary, we have come to ex-
pect 1nfallibility. The . costwperformance ratio decreases continuously.- In
i sum, computers do not present technological problems. However, there'are
some unsatisfactory aspects in their use, as outlined in the following.

In modern life, computers are becoming almost as numerous as automo-
biles, and the feeling develops that computers are going to be an- 1ndispens-
_ able companion for many ‘everyday activities. However, we observe that while
the majority of automobile users drive their automobiles themselves, a sig— l
nificantly smaller portion of‘computer users do ‘their own programing direct~
ly: as a matter of fact, a nen profession has-developed.for the operation‘of.
‘_these'machines. Note, moreover, that the dataz we have to process, and the
.dynamic systems we have to consider in driving an automobile arejmuch more
complex than the very elementary mechanization of a currently typical com— -
puter program In the course.of our analysis we will find an 1nterpretation
for the difference in 1nteract10n that occurs w1th automobiles and computers
(section 2.1.4, page 24y, o |

Others (see for instance Sammet 1969) use a different analogy. It has
been said that if the telephone companies had not -gone to dial telephoning,
then every woman between the ages of 20 and 50 would have been forced to be-
come a telephone operator in order to keep up with demands., Similarly, at
the rate computers and their applications are developing, it may be_neces—

sary for vast numbers of people to become programers. In fact, programers
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may well have to outnumber significantly the number of people who have prob-
lems to solve, Inasmuch as the problems themselves become more and more com—
plex.

Clearly we need to deal with computers directly, just as everybody today
dials directly his telephone connections, and almost everybody drives his own
car rather than obtaining the service of a professional driver. Naturally
each user would like to do this with maximum application to his problem and
with minimum attention to the annoying intricacies of the computer itself.

In order to obtain a general view of this situation, independent of
particular applications and computers, we shall try to identify the essential,
common protagonists involved in the use'of a computer. TIf a computer is
used, obviously it is for having executed some process conceived by a user;
therefore, there will always be, as a starting point, a process in sonme
user's mind. We do not elaborate on this for the moment, but indicate it as

point A in Fig. 1.

process
in the user's mind

modeling
effort

debugging
high - level effort

progrom

compiling

process ~—-machine

program

Fig. 1. Process transformations in the use of a computer.
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- With the same generality there will be also a package of information
that actually controls the computer hardware for it to produce the desired
process. All gemeral-purpose computers manufactured today are digital
machines that respond to organized sequences of instructions written in a
given language and in an established format. Thus, we can identify the
above package of information with the so-called object or machine program.
We indicate this as point C in Fig. 1. ‘

The machine languages of all commercially available computers are con-
ceptually very simple but quite inappropriate‘for human users to express
their problems. This makes impractical the production of machine programs
directly by the usef. Customarily an intermediate language is used, the so-
called.high—level programing language, such that the user can express in it
a specific problem with reasonable ease, and the obtained description can be
automatically transformed by the computer itself (in a preliminary run,
under thé control of the so-called compiler program) into a machine program
fof that specific problem. Thus there is a third protagonist: the program
in high-level language, or source program; we indicate this as point B in
Fig, 1.

Point B represents a concrete description (as a rule in the form of for-
mal sentences) of a process. Essential characteristics of it are: (1) to be
complete, in the sense that no further work is necessary on the part of the
user in regard to the process per se (obviously further work might be expect-
ed for interfacing the process into a larger system); (2) to be translat-
able into point C automatically without human intervention. At this point
it is irrelevant if in this transformation additional intermediate languages
are used. |

The activities involved in the use of a computer can be visualized as
the intercconnection of these three points. At the étart, the process in the
user's mind has to be ﬁodeled in terms of the elements of the programing lan-
guage. Depending on the type of process and on the language used, this mod-
eling<may appear straightfdrward or as mental acrobatiecs. It ié an effort
that takes sometimes several hours and sometimes several months to perform.
We indicate this activity with an arrow labeled "modeling effort™ in Fig. 1.
Then the source program (point B) is automatically transformed into the ob-

ject program (point C). We use the term transformation rather than transla-
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tion because typically the structure of the object program has little resem-
blance to the structure of the source program. If a2 good compiler is avail-
able, the user is completely relieved from the diffiCultiés of this trans-
formation. However, the development of the compiler constituted an effort
at some previous time; it is well known that compilers are the hardest part
in computer manufacturing, and that they make the system management complex.
In Fig. 1, this transformation is symbolized by an arrow labeled "compiling
effort". Finally, in the debugging phase, the actual actions made by the
computers have to be related to the original image of the process that the
user had in mind. It is well known that for nontrivial processes, debugging
is the longest part in the programing activity. We symbolize this part in
Fig. 1 with an arrow comnecting C to A labeled "debugging effort".

We can now relate the inconveniences mentioned at the beginning of this
section with the activities symbolized by the arrows in Fig. 1, and figur-
atively relate their lemgth with the amount of effort involved. In the pres-:
ent approach to computers, A is not analyzed, C is maintained essentially at
the level it happened to be in for the first computers, and most of the ef-
fort is devoted to finding the best location for point B. From this arises
the proliferation of programing languages.

The conjecture is here made that the best overall solution cannot be
obtained by maintaining this approach. Point B cannot be very cleose to
point A; characteristics (1) and (2) mentioned for the source language con-
stitute limiting comstraints. For instance, we cannot use spoken languages
because of the difficulties of automatic interpretation and translation. We
cannot use a set of mathematical expressioﬁs because they do not form a com-
plete, autonomous description of a process, in the sense that the connections
between them and the interpretation of the symbols used need to be supplied.
On the other hand, B cannot be too close to G, for instance, by using macro-
assembler languages, because the modeling would be too cumbersome. One may
think that for each specific application an optimum point B can be deter-
mined, but a large multiplicity of languages is undesirable and expensive.

In regard to debugging, the situation is no simpler. We leave aside
here the theoretical question of proving the correctness of a program. For
every complex new program, it is a fact of reality that some unexpected prob-

lem will occur. If the problem is unforeseen, the actual behavior at point
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C must-be'directly analyzed against the'requirements at point A, regardleSs

of the debugging facilities available. One may think to minimize the occur-
rence of these events by prov1d1ng all sorts of automatic aids' but in thls .
cage. {given the distance between C and A), the ald system may be more com~ .
plex than . the computer itself moreover, it is not obvious that the effort of .
1nterpret1ng them in the unforeseen cases W111 not nullify their benefit.

In the visualization of Fig.rl one can think that all problems would be
cased if point A and,C were closer. All three arrows (symhols of the_efforts)
would be shortened; The ideal'would be torshrink Fig. 1 into a single point.
Such an approach reduires a reconsideration'with‘a fresh view of points A and.
‘C;. Before going further, we will analyze in some more details the present ap~
 proaches in the next two sections- the discussion then w111 be resumed in
" section 1.4.

1.2 THE COMPILER APPRDACH

The automatlc transformation of the source program into the object pro—
gram by means of a compiler program is the-basic approach of today s compu-
: ters, and has made p0531ble ‘the’ present exp1051on of computer appllcatlons.
Its rationale is to give users a high-level language appropriate for thelir
'problems, to optimize computer hardware in. terms of the: availalbe technology, )
and to provide suitable software systems for’ connecting that hardware with
that language. Given the different characteristics and requlrements of a
humsn being and a machine,”the'approach'to:treat them separately seems the
most logical'one{“The unlimited power.of language for'eXpressingrhuman'
7-thought is well known, thus this choice of form of expression is indeed uni—
versal. Studies in natural 1anguages develop generative -and recognizing pro-
cedures for 1ncreasingly larger subsets of them, studies in artificial lan-
guages develop increasingly richer systems, automata theory gives increa31ngly
new ingight into the structure'of,languages. As a consequencelrthe expecta-
tion develops that arformal language of sufficient power to be‘appropriate
for general use, and automatically translatable Wlll in the future complete—u
1y solve the problems of this approach ' , '

To gain a better insight into . th1s approach let us expand Fig 1 with
-more pertinent details. The user expresses the activities he has-in mind
in the form of:stereotpped sentences; on the one hand this requires a |

‘remodeling and often a deformation of what he has in mind, and on the other
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hand it permits him to prescribe with minimal means the very complex (invis-
ible) activities that the computer has actually to do. This is the great
advantage of present programing languages in the context of present computers,
The compiler, in turm, has to interpret these minimal expressions and then
reconstruct all the corresponding complex computer activities. This work
can be indicated diagramatically as in Fig. 2. The source program, consti-
tuted by strings of symbols with a certain flexibility as appropriate for
the user, receives a lexical pass to be transformed into rigid strings of
~other symbols more appropriate for the machine manipulation. These strings
are then subjected to a syntactic analysis for recognizing their grammatical
structures and reducing them into explicit, complete, local forms. Next, a

first machine-code generation is produced. Because of the unsatisfactory

source program

lexical analysis

Y

syntactic analysis

Y

code generation

4

code optimisation

b

assembling

object program

Fig. 2. Schematic sequence of operations in a program transformation

from the user to the machine language.
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object program that would result at this pOint‘.an optimizing phase follows
which eliminates redundancles, changes the p051t10n of 1nstructions in order

© to reduce their occurreices, chooses more’ efficient processes, -and attempts

to apply the several programing tr1cks. Flnally, the actual object program -

is assembled with ass1gnment of expllcit addresses, cho1ce of registers, B

and ordering of the controls.

The power and potentlal of the approach of automatlc 1anguage transla- '
tion is well known and documented. The interest here is in c0mpar1ng alter~ R

native approaches to it. We can observe that naturalness and flexibility in N

the programing languages clash with the complexity of the- compller.- The'
more sophlsticated the compiler is, the more mysteriOus the actual computerr
behavior appears ‘to the user, with consequent dependency of the man on’ the
_Amachine rather than vice versa. So far ‘no one programing language has
proved suff1c1ent1y efficient for’ all types of problems to dlscourage the
use of the other languages.' On the contrary, the feeling develops that a -
single language would freeze the knowledge and techniques of a partlcular;
moment, blocklng the beneflts of successive developments. ‘In fact, there
'has been a coutlnuous development of languages each more approprlate in a
. broad range “of problems and made more effective by software peckages for
‘each class of appllcat1ons.' The proliferatlon of programing languages that
. has occurred can be seen in Sammet (1969) , .
~ One of the problems of the proliferat1on of: 1anguages is the number of

compilers that become necessary for the automatic translatlon of all users'

programs for_all types of computers. . Suppose that there are 33 1anguages in

use and 33 typeS'of‘computers; for making each computer'capable of work with:

_'each”language, the computer communitf should possess 33 x 33 = 1089 compil¥

ers. - For each new language and for each new computer, 33 new compilers have

to be developed. This fact was recognized very early, and the poss1b1e ad—
vantage of a common intermed1ate language was pointed out (Strong et al.
1958). 1f all the above 33 programing languages can bé translated to a
hypothetlcal intermediate language (UNCOL), and programs in this language
can be translated into ‘machine programs of the 33 computers, the community
would need only 33 + 33 half compilers (half because the 1ntermed1ate lan~-
guage Would be ‘halfway between a user's and a machine language). Each new

language and each new computer‘would_require the development of only
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one-half new compiler. 1In spite of this appealing situation, such an inter-
mediate language has not been developed (Steel, 196la,b). Dennis (1971)
faces this problem with a new insight, in terms of a common base for pro-
graming languages, simultaneously, and in accordance with general systematic
guidelines for computer architectures.

Another problem of the compiler approach is the difficulty of obtaining
efficient object programs, in comparison, for instance, with carefully hand-
coded programs. Another inconvenience is that for each program modification
an entire new compilation should be made. Direct interaction with the com-
puter, in the presence of compilers, requires complex software systems; a
similar situation occurs in regard to debugging. For many unusual problems,
and typically when real-time processing is involved, compilers are mot help-
ful, and the user has to proceed with the cumbersome preparation of the pro-

grams in machine language.

From the viewpoint of the study described in this report, we wonder
about the amount of program manipulation (often exceeding the actual problem
processing), and the complexity of the software systems required in this
approach, The compiler approach tacitly presupposes that phrase-structure
languages are the most appropriate means for communicating with a computer;
the validity of this assumption will be questioned in chapter 2. Finally,
we note that the roles and the difficulties of compilers may change signifi-

cantly if the computer hardware takes a different approach,

1.3 THE APPRODACH OF THE LANGUAGE DIRECTED COMPUTER

As a consequence of the problems encountered in the approach deseribed
in the previous section, the question rises recurrently whether computers
constructed to execute directly programs written in the user programing lan-
guage can lead to a more efficient overall system, especially in view of the
technological development that are continuously occurring.

At the same time, every systematic approach that is attempted for con-
structing computers illustrates the wide range of designs that are possible
and the different levels of abstraction that can be assumed as visible
architecture. Examples of these studies can be found in Iliffe (1968),

Kilburn et al, (1968), and Bijoner (1971). In this situation, one
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- thinks spontaneously 301ng from the botton up in Fig. 2,'in the sense of

o 1mplement1ng dlrectly more and more of - the program transformations, up to

the direct hardware 1mplementation of the. user. language. o
These questions will appear again and again until a. satiefactory proof
1s given that one or the other approach is preferable.- On this subject the .

1mag1nary situation de5cribed by McKeeman (1967) is relevant.

It is an accident that digital computers are organized like
desk calculators - ‘with somewhat worse luck we might have taken the
Turing machine as our’ model

_ Now, if one of the users of an automatic digital Turing
‘machine were to: suggest revolutionary additions such as a large
random access memory and a special command- to add the contents

" of two memory cells, we tould expect to find him attacked on
various counts. A .design engineer would complain that the addi-.
tions were ad hoc and destroyed the ‘easgential simplicity of the
Turing machine.‘ Besides ‘they would ‘make the machine’ ten:times '
more expensive to manufacture.. Another user would Wistfully

" agree that the additions were clever and nice but he: couldn't

~ afford the expense of reprogramming his entire library of
Turing machine programs: a working group- would publish a 1list
of accepted standards that were in jeopardy. And finally it
would be pointed out that next year's Turing machine would be
twice as fast. :

_ The disgruntled user would of course, - take refuge in _
Vhigher languages., He would use a compiler that would, when .it
saw the symbol '+', generate the necessary 175 Turing machine
instructions required to add two adjacent bit patterns on his
tape. ~

~ As time werit on, the user might console himself with
progress. . the discovery of a new 167 instruction add routine;
hyper-Turlng tapes where the bits are recorded in: frames 9 bits
wide: the appearance of a pipeline micro-parallel Turing ma~-
~ chine which, under special circumstances, could execute 27
51mu1taneous Turing machine operations: and finally, the Ulti-
- mate - two time-shared Turing machines working on -the same tape.
The solution of some problems would still be ‘beyond reach ‘
" and the federal government would allocate funds for a really
ﬂ“—'parallel effort ~ 100 Turing machines arranged in a.10-by-10"
array sharing 20 tapes on a grid, 10 across the rows and 10
down the columns. Since the machine could be shown to be
. potentially'IOO times as fast for some problems, the best
. programmers in the world would stand in line to use ir,
thereby insuring its success by contemporary standards.

The quoted excerpt is w1tty and polemic, as is appropriate in a con—
ference for shaking the minds. of the audience; but it has also an enduring
value insofar as it refers to one of the fundamental choices in—-computer

design, the level of the working hardware. Sometimes it is referred to as-
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software hardware tradeoff. McKeeman then observes that the rudimentary
philosophy of the computer (the Turing machine in his analogy) is not neces-
sarily a negative aspect; special provisions may increase the efficiency in
each class of problems. Nor should the complication of the machine programs
constitute a handicap; compilers may present the users with a completely
different machine. The real uneconomic aspect is probably in the redundancy
of the problem descriptions; they require large memories and complicated
manipulations.

Chu (1973) analyzes the "proximity" between the users' programing
language and the actual machine language, for different computer architec-
tures. Then he points out the advantages that can be obtained when the
high-level programing language is the machine language of the computer.

A gearch in the literature has shown the following studies and imple-
mentations toward a higher working level of the hardware.

Anderson (1961) looks for an isomorphism between machine organization
and the manner in which a user expresses a problem. He thinks that a good
programing language properly reflects the concepts and abstractions of a
particular class of problems, thus an efficient implementation of the lan-
guage should constitute a good design goal for a computer. The language
considered is ALGOL.

Mullery et al. (1963, 1964) aim to use a computer as directly as possi-
ble, without compilation. To this purpose, they develop first a general
machine~independent high-level language, then a computer organization in
accordance with that language. In recognition that data have always a
structure, the language is strongly influenced by the cholce of data format:
a string of wvariable length, articulated up to eight levels in a tree fashion.
The syntax of the language aims to be familiar by using nouns, adjectives,
and verbs. It turns out that also the computer works in a phrase-structure
mode, At the stage of the design, they find that the cost is slightly high-
er than that of an equivalent conventional computer. Reports on efficiency
and practical use have not been found,

Melbourne and Pugmire (1966) implemented a subset of FQRTRAN with a
microprogramed compiler which works during the input procedure. Statements
are converted into reverse Polish expressions, and identifiers are replaced

by storage addresses. The resulting execution time is less than for con-

- 10 -
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ventional compilers, and greater than;for'hsnd‘coding, ;They-noint out. the
ease of immediate 1nteract10n. ‘ . o '

Bashkow et al. (1967) designed a partial implementation of a FORTRAN
machine, - Statements_are interpreted 1n.hardware; no‘provisions:are taken
V'for subroutines. . ,' . 7, ST ) '

- Weber (1967) 1mplemented EULER in a conventlonal computer by micropro-
graming Wlth additional ROM partly as compilation, and partly as interpre-
tation.' The actual obJective was to show that with the help of micropro—'
graming ex1st1ng computer hardware can be utilized to a higher degree than
with conventional programing systems o - L
‘ Iliffe (1969) built an experlmental computer ‘with a "base more orient-
" ed to the elements of interest to the user. .. The basic type ‘of elements are
‘numeric (1n different representations), control (correspondlng to 1nstruc—
tiom- sequences), and ' dddress (corresponding to information.structures)
With' these elements,'a process is - constituted of few elements, typically
less than a hundred. " The details of these ba51c elements ‘are not accessible
directly. The functions of the maehine apply to all three types of elements,
, with some restrictions. The syntax of: the language is standard
. The hardware 1mplementation of APL has been considered by Thurber and
-Myrna (1970) This work. is oriented to. future, large—scale 1ntegration with
- which cellular arrays could be feasible. A matrix—oriented architecture is
designed for which APL is an assembly language. Some of'the APLfinstruc;
tions are microprogramed thus involving some sequentiality. ~A complete im-
plementation of APL has been made by Hassitt et al. (1973) by means of micro—"

programing a conventional computer. Programs w1th only scalar operands Tun

slower in this. machine,,and programs w1th large vector operations run faster .-

than. in the conventional ‘approach.

'SYMBOL is the latest experiment of a hardware—lmplemented high- level
machine language (Chesley and Smith . 1971 Smith et al. 1971). The language
used "is fully in the mainstream of present languages . Practical_evalu-, '
ations are not yet available. ,

Vineberg and Avizienis (1972) have studied hardware solutions for taking
'advantage of computatiomal independence within and among source statements.

' ‘Surprisingly, there anpear to be no publications“on_hardware_implementa-

tion of Decision Tables, a language that is”particularly suitable for direct
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implementation. Early computers were directly controlled by tables; analog
computers, in a sense, follow decision tables. In modern times, Decision
Tables implemented in software are recognized effective and are used (zee
McDaniel 1970; Low 1973).

All the studies and implementations mentioned in this section show par—
ticular advantages in relating more closely the structure of the programing
language and the structure of the computer hardware. However, no significant
impact was made on the mainstream of computers, in which language and hard-
ware are developed independently. One can argue that the issue had not been
attacked from its actual roots and with sufficient freedom. In the repre-
sentation of Fig. 1, these studies and implementations can be visualized as
attempts to bring C closer to B. The following comment can be made after
the work described in this report: While attempts to exploit the capabili-
ties of hardware have an unlimited potential, it appears not simple and easy
to map directly the conventional hardware "space" with the "space" of

phrase-structure language, as are all present programing languages.

1.4 A GLOBAL APPROACH

Current computer approach can be expressed as follows: The mechaniza-
tion of the computer is assumed as given, then each problem is transformed
(in fact, deformed) in such a way that it can be solved with that mechaniza-
tion. In Section 1.2, one part of the typical transformations to which a
problem is subjected was outlined. In Section 1.3, attempts were cited to
make the computer mechanize higher levels of the problem representation.

An example has been shown (Schaffner, 1972a) in which the level of the
computer mechanization has been raised to such an extent that we can think
of an approach cpposite, in a sense, to the current approach: FEach problem
is mechanized as the user sees it, then the computer is transformed, or syn-
thesized, in such a way to match that mechanization. This approach sounds
interesting, but the point is: Which is simpler, or more practical, the
deformation of the problem or the synthesis of the computer ?

To find an answer, it is necessary to give a precise meaning to "mech-
anizing a process" ar- "synthesizing a computer". Thus, we need to analyze
how human beings think of their problems, how thinking can be expressed, and

in how many ways processing in general can be implemented by physical
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devices. This brings'us into the fields of'pSychology, linguistics, and
mathematics._ Moreover, in searching for suggestions on how to make up pro—A
rcessing systems, 1t is appropriate to take an excursion 1nto neurology
Similar conclu31ons can be derived also,from different uiewpoints. “For
-7instance,-£rom:the-concluding,suggestion of the'HcKeeman addreSs,(see Sec~-
tion 1.3)% ' S ' o | : ' o

'The obvious attack for programmers'and'hardware people together“is
to devise language that reflects what we want to do.and how we do -
it, and machine structures effective in handling that language.rp

If we start from thlS attack w1th a’ fresh perspective, we have to recognizef
that programing in essence is a communication between a human being and a
A'machine.r Thus, we have to start from ‘the disciplines pertinent to humans -
psychology, linguistics, mathematics - and then look - for all p0531b1e ways
of 1mplementing processes - engineering, neurology Obviously, the consid-
eration for user characteristics should not be llmited to external aspects,
:such as studying the most relaxing color for the computer cabinets, or. the
least fatiguing type of display, but should go to the essential level of the‘
' nature of our thinking ' o
‘ In conclusion, we are considering here a global approach of analyzing
the nature of the processes as they are in the user's mind the possible
forms of representation, the possible Ways of implementation and then we
search for solutions that might appear of 1nterest, taking 1nto account all
.the related factors, In an. attempt to make this fresh perspective a useful
contribution, we take here a pos1tion of audacious complete freedom from
any constraint, or estahlished 1nterest and observe a8’ much - as possible
from a far distance, including collateral fields as nmuch as poss1ble._ This'j
interdiscrplinary study ‘seems to have brought 1nteresting results.‘ Common o
aspects 1n thinking, representations, and processing have been shown, for
which a closer relation can be established among the three points of Fig. 1,
sultable for practical application. _ 4
AlY these aspects have been studied in depth by different people a.
different t1nt,w1th different objectives. But it does not appear that. such
a global approach has been taken with sufficient commitment in regard to
computers. Most work: has concentrated on the phrase-structure 1anguages
and‘computers have heen,kept_around the notions of instruction-obeying pro-

cessors and randomaccess storages.
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- Why Abstract Machines ?

2.1 INFERENCES FROM PSYCHOLOGY

2. 1 1 Introductlon

As said in Section 1.4, we look for, some 1n31ght into the processes as

they are in the user 5 m1nd for the purpose of 1mproving the activities in- -
olvedrin the use of computers. _ This brlngs us into psychological con31der-

.atlons; which'are'discussed'iu thls sect1on.' It is necessary to state that
this section is not 1ntended to be a survey of modern psychology,_that the
theories mentioned are as_ understood 1nterpreted maybe biased from our
platform, and that our concern is only for plcking out some clues useful, in
an informative ‘or in a heuristic sense, for our goal. o

Two branches of psychology are particularly relevant to thls study, the
- theory of thought and the theory of language. The history of these flel&s
ggoes back to the classical phllosophers, in their. perpetual search for unl—:
versals in nature and in human thought. As always, past patterns,rexperi—_
ments, and-recurreuces have a2 heuristic-power, and may facilitate freedom
from what may_be merely'incidental. A‘suruey from a psychological vleWpoint
of the studies of thinking,_frem Aristotle's image to the prssent is given
in Mandler (1964). Mathematical modeling is discussed in Miller (1964). A
historieal review of psychological studies of language can be found in
Blumenthal'f1970) - However, only three references to the past are cited as
an indication of the variety of relévant possible studies.

Modern graph theory confronts us with an impressive field impregnated
‘w1th 1oglco—mathematical properties. This fact clearly has deep roots in_
psychology, and can be found in a variety of forms at all times. A semi-
historical survey of these reappearances is in Gardner (1958).

Axiomatic mechanization is one of the patterns of thinking. Associ-.

,ation‘psychology applied it to modeling thought (see,:fsr instance, Warren
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1921). A mechanization, even if related to completely abstract objectives,
is suitable for implementation by machines; a realizable abstract machine
implementing this theory was indeed desecribed (Reiss, 1962).

Gestalt psychology, as complement to the extreme schematization of
associationism, reveals the existence of a natural "facility" in human
thinking to proceed in terms of global entities.

In modern times a rigid concern for experimental evidence, together
with more and more use of mathematical tools common to other disciplines,
has brought psychology, in particular developmental psychology, to more
fruitful counection with other independent fields such as mathematics and
artificial intelligence. It is from developmental psychology that we will

derive heuristic notions and support for certain assumptions to be made.

2.1.2 Developmental structures

Piaget describes three main stages in mental development (see Flavell
1963; Furth 1969).

1. Stage of sensori-motor operations (up to about 2 years of age). Co-
ordination of perceptual and motor functions develops. The scheme of per-
manent objects progressively comes into being, in the sense that an object
is known to exist even if it is out of the perceptual field. ZFElementary
forms of symbolic behavior take place.

2. Stage of concrete operations (approximately 2-11 years). Properties of
the present world are established (conception of space and time). Organiz-
ation of complex operations develops, all directed te the concrete here and
now. The world starts to be represented through the medium of symbols.

3. Stage of formal operations (from about 12-15 years). Hypothetical
reasoning and deductive procedures become possible. Operations on inter-
nalized actions form new internal structures. With these means the contin-
ual growth of adult thinking proceeds.

A key point in Piaget‘s.theory is that each new capability derives from
integration and grouping of the capabilities previously developed. The new
groupings result in new mental "structures'. They are on the one hand more
synthetic, organized at a higher level; and on the other hand richer in
details, more differentiable ("structured whole", set of all subsets",

"engsemble des parties').
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There is a continuity of development' the operations characterlstlc
of each stage are based on operations characteristic of the prev1ous stages.
" By grouplng or 1ntegrat1ng structures, new structures, and thus new func—
tions, are produced In turnm, the integrating or grouping of these new
structures produces still more- new: structures. Each class of structures
const1tntes at the same time ‘the ‘attainment of one stage and the starting
point of the next‘stage. A structure at each given level 'is composed of -

structures of lower 1evels.

. Piaget has related these structures to 1ogic (Piaget 1950 Inhelder

- and Piaget 1958) ~ Logic and psychology are two'independent disciplines;
the first is concerned with the formalization of internally consistent sym-f
bolic systems, the secondvdeals-with the mentallstructures that are actual-
ly found in all human:beings,'indeoendentfof formal training orlthe;nselof‘
'particular notational symbols, and regardless of consistency.s Piaget
_applies the first as a theoretical tool in the description of ‘the second

As an example, the new groupings that occur. in the mental structures corre-
spond 1ndeed to. the possible combinatlons in logic. He finds also that at

different stages different loglcal functions can be performed

In. regard to. the cause of development Piaget 1nvokes the mechanism of
. anyequilibrlum, The more ‘unstable the systEm is in dealing w1th new. situ-
ations, the more new integrations and groupings are 1nduced The broader
the stability of a new structure, the more this’ structure becomes a perman— -
ent scqui31tion and is assimilated. - ‘ '
One 1nterest1ng outcome in Piaget theory is that. 1ntellectua1 develop—,

'ment occurs autonomously, independently of outside informatlon although
~very strongly affected indeed by it. ‘ '

~ -One fundamental concern for psychologists is cognition. ﬂaking a copy
of objects pertaining to an obJective world was one past theory; evoking
“innate images was another.‘ For -Piaget cognition is a process between per-
ceptual data and operational structures. The structures adapt themselves,
evolve in order to remain in equilibrium in the presence of new perceptual
data. Perceptual data may or may not produce evolution depending on
whether such equilibrium can be reached. Signals from the env1ronment may
remain meaningless and mute, or they may produce large consequences, accord-

ing to the possibilityVOf cognitive processes between the arriving signals
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and the receiving structures (readiness of the receiving organism), Differ-
ent structures will produce different outcomes. Thus cognition can be af-
fected by working either on the input signals or on the internal structures.
An object can be known only by being conceptualized to some degree.
Knowledge is an adaptation and assimilation process.

It is interesting that here an input can not be "declared" to be some-
thing, from the outside; but it is what results from the interrelation be-
tween input and structure. This approach has to be taken because of the
extreme complexity and variability of the structures.

From the theory of developmental structures we can derive heuristic
notions. Ome can start from the available, or familiar, level, then proceed
in integrating and prouping until a satisfactory solution is found. The
familiarity, or the permanency of a level of integration is a funetion of
the range of applications and success attained. We can also derive a heur-
istic notion of embedment of different levels. Or, put in a different way:
rather than thinking of separated processes, one for each level (performed
in sequence of time, or cascaded in space), we can think of a global, more

developed, process (structure) comprised of all the levels.

2.1.3 The spatiotempofal frame

Piaget's modeling of mental processes emphasizes an evolutionary devel-
opment of the mental structures during the different stages; in particular
he refers to the "structural integration of concrete and formal operations"
(Inhelder and Piaget 1958). Because the concrete operations are structured
in a spatiotemporal frame, and because they are the basis of all the subse-
quent formal operations, we may deduce that all the mental activity of the
adult, in its inmer work, at some level, is structured in a spatiotemporal
form. Of course,new, more effective structures can always develop.

Following a different course, other psychologists (Bruner et al. 1966)
emphasize the evolutionary bounding up between perception and sensorimotor
schemata {see Section 2,1.4). During the first months of life visual per-
ception is inextricably associated with the handling and moving of objects.
Because the structures thus learned remain fundamental throughout life, and
are used also in later higher level intellectural activities, the frame

formed at that time is embedded in abstract thinking.
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o In regard to the conscious level people refer to- 'spatial intuition";g-
VIn all abstract discuss1ons, recourse is made to this spat1a1 1ntu1tion' 1td
is. consrdered doubtful that even. modern mathematics does not’ derive all An- -
:formation from spatial 1ntu1tion (Beth/Piaget 1966) It is a fact that _
whenever an. adult (even a logician) uses some kind of symbolic representa-'&
tion to’ describe a classification ‘he is bound to think in spatial terms ‘

j(Inhelder and Piaget 1958), Taxonomical trees and the Euler c1rc1es are ex-

iamples. Even when dealing with the most abstract entities, we talk and think “.
'.of mapping one‘ space into another Space .b-* ' : ‘
It is clearly meaningless to say that spatial relations are objectively

g determined from the environment. Experimental ev1dence shows that spatial .
'notions do rot derive directly from perception,_on the contrary they imply S

a truly operational construction (Beth/Piaget 1966) “Neither is there any
':usefulness in assuming that Bpatial categories are 1nnate.. ‘The Piaget pro-'
Ccess of cognition shows that 1t is through the development of . "1ntelligence
'in reaction to- stimulae from the environment that the- indiv1dual constructs
rspatial notions. The objective constructions that we are accustomed to - “
place w1th1n the env1ronment are for Piaget identical Wlth the structures of -
1ntelligence. 'In fact, everything we connect w1th obJective, identity,_l‘.
causality, space, and time 1s regarded by Piaget as. constructions and. liv1ng
-operations (Piaget 1971).. The fact ' that all human beings construct the same -
spatiotemporal frame is easily explained by common genetic structures.:‘It:='T
115 known that frogs have a’ v1sual and related processing apparatus quite
-different from’ ours (Lettvrn et al 1959), and very likely their mental
f‘frame is different too. I , Y .
In this light, it is probably fair to say that the- sPatiotemporal frame;u"
f.is basic ‘to our thlnking, and the frame remains, regardless of further com—
plex mental structures that are developed subsequently. At the consc1ous )
level, however, one can "feel" different dégrees of 1nvolvement of the '
spatiotemporal frame, because of strong internalizatlon of new structures.
From this the 1mpress1on originates that "spatial intuition .may be only an
‘heuristic device that is applled frequently., In sum, we ‘may say that the
spatiotemporal frame is the original substratum in Which thought takes place-

the degree in which thls remains conscious varies in different cages,
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2.1.3

If this is so, the hypothesis can be advanced that any mental struc-
ture, at any degree of symbolic abstraction, in which spatiotemporal form
does not appear at the consciousness, can be restructured also in a spatio-
temporal frame; and the new structure should appear at least very
objective; whether it is also simpler needs to be sesen.

An application of the above is in the following: If our objective is
to develop (''to discover", in the sense that we do not yet have mental
structures perform it) a logical system different from the familiar spatio-
temporal system, obviously we have to reject (at the conscious level) the
spatiotemporal frame; we have to work with the available structures to
arrive at a consistent new system, and-then we need to exercise the new
system to internalize it.' But if our objective is to describe a process
that can be modeled well in the spatiotemporal frame, we create unnecessary
work if we describe it in a different frame. This observation is made be-
cause in our opinion there is the following curious situation. The pro—
cesses we give a computer can typically be well modeled in the spatiotempor-
al frame; all today's programs (a program is a description of a process) are
expressed in the form of strings of symbols, form that needs a nonindiffer-
ent elaboration before it can be framed in our inner spatiotemporal struc-

tures - that is, be understood.

2.1.4 Words and imagery

In a broad sense, mental activity can be viewed as information process-
ing, thus information has to be represented in some form, both internally
and externally. In this fascinating, multifaceted, deeply intricate area,
we will consider a few aspects very pertinent to our study. An extensive
treatment of this subject can be found in Paivio (1971).

Bruner (Bruner et al 1966) delineates the successive development of
three modes of representation. (1) Inactive (motor): at first the child
knows his world by the habitual actions he uses for coping with it, Be-
cause these actions, or schema, are exclusively devoted to specific loecal
goals, this system does not permit a real mental activity. (2) Ikonic
(images): representation is made independent of action, and is permanent;
it is formed in space and time, and allows for a degree of abstraction and
anticipation. (3) Symbolie (verbal): the symbolic structuring of informa-

tion permits the full development of intellectual activity,
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" The details -and dlfficulties of such a classification are not of rele—l
" vance here. Of interest 1nstead is the notion that "each of the three modes
of”representatlon has 1ts unlque way of representing events. Each’ places a
‘7powerful impress on the mental 1ife. of human be1ngs at different ages,‘and
thhEII 1nterp1ay per31sts as one of the maJor features of adult 1ntellectual

L life". We ‘can also observe in the external human communlcatlon the use ‘of - ‘a-

‘mixture of words, 1mages, and gestures that are: dlfficult to. separate from
t,each other._‘ ‘ ‘ ' ‘

Plaget (Piaget and Inhelder 1971), in reference to ‘his’ developmental
structures and cognitive processes (section 2.1. 2), considers, two main sym- .
- bolic systems for representlng 1nformation. * the verbal. system, and the sys-'
' tem of mental images or imagery. : ' "

: The verbal system derives Erom perception (typically, but not: exc1u31ve—'
: ly, from the audio apparatus), presents at the surface a serial nature, and
" has lex1cal syntactic, and semantic structures. CIts pecullar characteris—
.tics are ‘the ability of categorization and a- permanent precision. It 1s
particularly effective for representing abstract concepts and has a largely
'varying efficacy in representing the other object of thought.
The 1magery system derives from perception (typically, but not exclu—
"sively, from the visual apparatus), through 1nternalized 1m1tation (1n Piaget),;;
or ‘some other schematiz1ng process, and presents at the surface a parallel
nature, It evolves from static to kinetic to transformational nature, each
:fform remaining avallable, and- is capable of a- continuous stylization from -
Cwivid views to pure abstractions.' Its peculiar characteristics are the
ability of conden31ng 1nformation, and an operational dynamics (as it will be
'elaborated below) It is very efficient for representing -a global- situation,
and has a largely varying effectiveness in representing ‘the different objects
of thought. I .
‘ - The characteristics of the two systems are: complementary and overlapping'
at the same time, "and the two systems are used both in alternative and’ co—
operative ways. ‘For 1nstance, we do not find the way_to_have a direct
' mental image" of the concept of truth. On the other hand we will never
terminate in descrlbing by Words "all“ the information we derive from a vivid,
.1mage. Images (Piaget contests ibid. )} are not less symbolic than wordS'
they are so in a 51m1115en51ble form; in the schematization process that they'

generate, they- retain the properties of 1nterest and abandon the rest that
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was perceived. They have the function to designate exactly as words have.
They are very rich symbols; in some instances not very precise; at the ex-
treme of stylization they tend to parallel words: a circle has the same
categorization power as the word "circle".

Images have a peculiarly important role of interface between perception
and the operations of intelligence. But the most interesting feature of
imagery shown by Piaget (ibid.) is the intimate collaboration with the work
of intelligence. The images help the evolution of the operational structures,
and the operational structures help the evolution of images. The work of
complex coperations would not be possible without the features of the images,
and the features of the images would not be possible without the collabora-
tion of operations. (These psychological analyses are of tremendous heuris-
tic value for our study, for they consolidate the notion of collaboration
between data structures and operational structures.)

It should also be considered that imagery is the symbolic system by and
large most available at the early stages of development, and thus the opera-
tional structures developed at that time are strongly oriented to images.
Because these structures remain integrated into all subsequent structures,
it is likely that imagery plays everywhere some inextricable role at least
in some layer of all types of mental processes. It is a situation that goes
with that of spatiotemporal frame.

The role of verbal language and of imagery in thought has produced in
the past a sharp controversy. Associationists considered images as the
material of thought - "thinking as a party of images". At the opposite ex-
treme, behaviorists considered images as an auxiliary and occasional sym-
bolism, and words the real content of thought.

From experimental evidence, psychologists today think that the mental
processes exist independently of each one of the two representational systems.
Neither one alone would fulfill the requirements for the mental activities
of which man is capable; both are used in a complementary and'ccoﬁerative
way, together with other less prominent sign systems. As a consequence,
these systems affect thinking. The language learned from the social environ-
ment indeed facilitates the development of thinking; and different languages
may produce different mentalities (see Whorf 1965). On the cther hand, it

can be said that the autonomous (firm point in the Piaget theory) develop-

- 22 -



2,14

'-ment of formal operations implies a symbolic language of communication, if
_not thought ‘the individual spontaneously would generate some form- of 1t.
'”'There is no doubt that images: and words interact continually in every mental
: _process.. Which form. is more dominant depends on the task, circumstances,
and individual differences. Mnch has - to be learned of both the verbal sys-.
tem and the imagery system“ in particular, in regard to, special roles of _
: imagery (see Piaget) Everyone can observe in himself how one form can in—.
- ‘voke instantaneously the. other. Paivio (1971) views images and- verbal pro—
| cesses as alternative coding systems,xor mode of representation, and hypo—

thesizes a double—coding system for memorization.--

' From an applicational v1ewp01nt it is well known that a picture is
worth a- thousand words . but. also "one word is worth a thousand pictures,j..h
if it contains the conceptual key : Thus, alternating the two forms permits
15better effiCiency. Verbal symbols are exact schematizations very suitable
for logic functions. ‘But:1f a problem is given such as_"Alice is taller
7 than Mary, Elsie is shorter thsn Mary; is Elsie ealler: ‘than Alice?" (in .
2Bruner 1966, P 9), translation into an up-down image allows a direct reading'
of the answer (Fig 3 c) - Mathematical expreSSions also become eaSier if ‘

they evoke some stylized ikonie or enactive element.,; _
Moreover,_imagery appears to have an- unequalled power in dts anticipar
tory capability in a spatiotemporal ‘frame ~ the so—called geometrical intui— B
'tion. Geometrical intuition can be considered as the practical counterpart
of the Piaget . theory of collaboration between imagery and operational struc-“r
tures. Note that this intuition cam be trained to spaces completely differ—f
'ent from ‘those developed from perceptual activity. Pa1Vio {1971), in eric-
‘ically analyZing the different vieprints on the subJect, suggests that
imagery is the very basis of swift leaps of imagination in creative thinking :
It ds not by chance that the word "imaginative" has the meaning of creative.
It is important to make clear that imagery refers to the internal sym-
bolic system used. by the mental structures; it has nothing to do with the
graphical means we use for communication with the environment although
needless to say, one typically evokes the other. TFor instance, in the three-
" term problem cited above, we can represent (at the outside) the girls in dif-.

ferent‘verbalrand ‘graphical forms, and evoke different.mental structures.
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In Fig. 3(a), the problem is represented in a verbal form, is modeled
in a verbal structure, and it evokes mental verbal processes. Typically, a
time of the order of ten seconds is necessary for the mental structures te
solve the problem, when represented in this form.

In Fig. 3(b), the problem is represented in a graphical form, almost
pictorial, but it is still modeled in a verbal structure, and evokes verbal
mental processes, ‘A time little longer than previously is typically used
for solving the problem represented in this form, due to the extra coding
of the girl's dress. This coding was necessary to avoid evoking imagery
processes by showing different heights in the girl's pertraits.

In Fig. 3(c), the problem is represented in a graphical form that is
completely symbolic, rather than pictorial; it is modeled in a structural form,
and evokes imagery memntal processes. The observer doesn't feel like making
any elaboratien at all, and declares that the problem is'obvious". Note that
much less symbols and means have been used in the representation (c) than in
representations (a) and (b). The modeling has indeed a great influence.

In Fig. 3(d), the problem is represented with verbal means, but is
modeled In a graphical form, and evokes imagery mental structures. As soon
as the code of the problem is communicated, if not already guessed by intui-
tion, the problem appears instantaneously solved, as for the representation (c).

Clearly, it is not the use of external graphic means that is determinant,
but the modeling of the problem in such a way that effective mental structures
are evoked. Cognition is a process between external representations and men-
tal operating structures,

At this point, it appears particularly remarkable that today's computer
programs are developed in the form of word strings. Now we can attempt an
interpretation for the fact observed in section 1.1 that, while most auto-
mobile users drive thelr automobiles themselves, a much smaller fraction of
computer users write the programs themselves; this also considering other
factors such as responsibility, cost, and intrinsic complexity, Driving an
automobile is fundamentally a sensorimotor activity with full use of imagery;
preparing a computer program in today's programing languages is a symbolic

activity deprived of direct imagery.
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- Alice is taller than Mary
- Eisie is shorter than Mary

- is Elsie taller or shorter than Alice ?

vl 2 4

= Elsie

mz |

relgtive height’

ALICE
MARY

ELSIE

- 2.1.4

(a)

(b)

Fig. 3 - Different forms of modeling and representation of a problem -
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We take the occasion here for an observation that will be of interest
later, There is a well-known game called charades, in which a person or a
group of people have to communicate to another group a message through mime,
without any use of words. The message to be conveyed may consist of a name,
an object, an event, or even an abstract concept. We see here a mode of
representation that is not word structured, and that performs the same role
as the verbal language. While on the one hand the rate of information trans-
mission is typically very low, on the other hand certain nuances of feeling
can be easily communicated by "body language" that would be difficult to ex-
press in sentences. The fact that this game is enjoyed as entertainment
suggests that those activities related to creating and interpreting images
and imitations do not constitute, subjectively, an effort.

Let us elaborate further. We can use mime to represent each single
word of a message; and have observers reconstruct sentences from the mime
activity. In this case we transmit through mime information that was
already expressed in the form of sentences. We can observe that the rate of
information transmission is low as is typical for mime, and that the capa-
bility of communicating feeling is poor, as is typical for spoken sentences.
In this case, by cascading the representations we degrade the communication
system — we sum the difficulties of the two forms of expression. Let us now
consider two parties communicating by telephone (without picturephone); one
party has expressed in geometric form certain properties, description of
which he is unable to express in sentences; he transforms the geometric con-
struction into sentences of a common language, and the other party recon-
structs those elusive properties. 1In thié case; fhe cascading of forms of
representation does not result in a summation of difficulties. These exer-

cises will be of interest for the discussions on page 170.

2.1.5 Concluding remarks

One of the most interesting aspects of psychology of relevance to our
study is the consideration of experimental data on mental processes in terms
of logico-mathematical structures. The subject obviously is a delicate one;
always questionable is the value of a theory of one field applied to another
field; but in the case of thought theory, the question is particularly ines-

capable because thinking itself is involved in any human activity. The
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independence of logichatheuatics from psychology is universally acecepted,
in the sense that nc‘psychologism in_mathematics, and no mathematics in psy-
chclogy.; However, from au-epistemolugical,vieWpcint, in the seuse of inter-
preting how science is‘the-pro&uct of man's actual thought, a'ccnnECtiou be- -
tween the logico—mathematical.structures and the subject's mental structures
' cannot be .avoided. Fascinating in. this reepect are -the Piaget's (1971)
speculations for explaining the "mathematical necessity” in_PSychological and
neurological terms. This necessity would be besed on the. need of equilibrium
aﬁa closure of the menral activities in resPcnse to'tﬁe(varicus external
stimula and internal: ‘elaborations. ' _ : i
A further range of considerations arises when the peculiar ‘features of

computer programs are also 1nvolved as it occurs in. artificial intelligence
(cf. Newell 1970 Papert 1973) ‘ '

~ In our aim to gain . -an 1n51ght into p01nt A of Fig. l we make treasure
,-of the theories of mental processes._ In particular, we acknowledge the' be-
11ief that the-role of the. spatiotemporal frame is a primary, rather than a
rsecondary support of thinking, the ascertained self-existence of thought re-
gardless of each particular’ symbol system, such as yerbal’ structures; and
the’ prominent role of imagery among the symbolic systems - Furthermore, we
feel a great heuristic power in Piaget 8 developmental structures, made of
successive integrations and grouping of . previously developed structures.

We will resume these issues in section 2.6,

2.2 MODELING AND REPRESENTATION
- 2,2.1 In_che"previous section, we saw_psychologists trying to model human
mental activities. In this section we will survey how those internal mental
activities try to model processes of the "external" world. The term external
is in gﬁotation marks to remind‘uS“that-any object of-mentai activity (as
opcosed teuthe mental activity itself).is considered external euen if that
object'is‘an internal creation without any apparent reference to an outside
world, as it can be a problem of pure mathematics. of course, thought can
elso make a model of itself; it‘is what ue were discuSBing in section Z.l.
From an epistemological viewpoint, as Minsky (1965) says, "to an ob-
server 0%, and object A is a model of an object A* to .the extent that 0%
can use A to auswer questiOns_thac interest him cbout A*", But here we are

not concerned about the connections between A% and A, e.g. the connections
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between a physical experiment and the idea that the experimenter has of it;
we are interested in the transformation of A into B as put in Fig. 1. There-
fore epistemological questioms are beyond the scope of our discourse. In
section 2.1 we saw interesting facts and theories related to A} in this see-
tion we are going to see which general types of B have been used in the dif-
ferent fields; and in section 2.6 we will sketch the character of the A to B

transformation that we propose for our goal.

2.2.2 A modeling activity, in the gense delimited in the previous paragraph,
can have several goals, and corresponding viewpoints. It can have a heuris-
tic purpose for arriving at the formation of a theory. It can have the pur-
pose of filtering the information we have on a complex situatiom, for arriv-
ing at a simplified description that keeps the properties of interest and
abandons those characteristics presently not relevant, It can be directed
to the establishment of a procedure for obtaining a given or desired process.
It can serve as a form of representation of a system. It can be used for
changing the means with which a system or a process is represented.

Our goal, the representation of what the user has in mind, has con-
nections with those viewpoints that increase in importance in the order in
which they were listed; the discussion will be weighed accordingly. We see
that modeling and representation are here strongly related. The choice of
the form of representation determines the selection of the type of model; and
the representation that is appropriate ie the consequence of the modeling.
Often a truly "problem solving" activity is involved, but we do not discuss
directly this viewpoint (see for instance Kleinmuntz 1966); we will give it
consideration indirectly by searching for tools that also facilitate solu-
tion finding. The main focus in this section is on the interplay of problems,
tocls, and people, as Naur (1965) put itj problems can be expressed only in
terms of some modeling tools, different tools make different problems, and
problems and tools exist insofar as they are recognized by people. TFollowing
the discussion in section 2.1, we can substitute people with the mental struc-

tures that people are capable of, or prefer to use.

2.2.3 From a historical viewpoint we can trace different forms that people

used for modeling/representing systems.
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Archimedes "give me a lever and a fulcrum, and I will move the
earth" is a startling example of a process modeled in the form of an abstract
machipe, and represented in a_verbal form. It is conceived through ths
geometrical intuition and is presented in axiomatic words.’ -

The bages of Leoﬁardq's'Codice-Atlantico are covered with represcntaﬂ
tions particularly interesting for the‘brcsent discussion. They are mcntal
conceptions, guided by mathematical knowledge, oriented to the attainment of
specific-tasksg they are not copiessqf.msmdrizedrpefceptions. Thus, it is
hard to distinguish whether they are abstract automata or visualizations of

real or possiblé objects. The form of representation consists. of sketches

- where the imitation of movement is among the means of communication, and their

spreading in the sheets makes an 1ntegra1 discourse W1th the words. There is
a full use of imagery, anticlpatlon, and verbal language.

The typical books ‘of englneerlng in the last century are full of
"artist's views" .of machlnery, visual and abstract at the same time, comple-
mented with.symbdlic signs and words. -As a result, they are functional and
structural descriptidns simultaneously. The practica; success of this type
of representation during the industrial revolution resides in the'poﬁerful

capabilities of the geometrical intuition of the reader.

2.2.4 For ﬁeuristic purposés, let us éxamine'mbdéling in a different en— -
'virohment: that of exhibitions; for example, world fairs, which are the
occasions where the maximum effort is made to represent something. The vis-
“itor's first .approach is an srchitecture, sophisticated, audacious, possibly
symbolizing important aspects of the whole. This reminds us thst_it‘is psy-
rchologicallylplcasing, or effective, or both, to see at first an overall
structure, and to have an initial preparation of the general spirit of the |
world to be seen. (Nothing of the sort is possible with present programing'
languages, which indeed have the task of representing the different worlds
that programs-are). Then, each issue exhibited in the pavilion.is modeled
and represented in the most appropriate forﬁ_among the several available.
Usually it is a mixture of graphic means and sentences; often actual mechan-
ical static or working models are used. We have here a well-facilitated cog-
nition process in the Piaget sense. The signals from outside have multiple
structures in order to prcduce an effective communication with the variety of
mental structures thatrthe visitors may have. The success of an eﬁhibition
is indeed affected by the broad bandwidth of. the language used. (Again the

contrast emerges with the monocromaticity of present programing languages).
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2.2.5 In a mathematical context, a model is constituted by a class of un-
defined mathematical objects, and relations among these objects. Modeling
is to express in these terms a particular behavior or a specific structure.
Mathematical models are the fundamental tools of all scientific work, and
no general discussion of them is needed here. ¥From a psychological view-
point, they constitute one mode of thought processes, the one that has the
well-known characteristics of rigor, stability, and deductive power,

A type of model of special interest is abstract algebra with related
abstract spaces. It involves the notion of mapping an object of a class
(or space) into an object of another class {or space). If the mapping is
between two different models, a correspondence is established between the
two. A model M' is said to be a homomorphic image of a model M when there
is a unique mapping of the objects of M into objects of M', and for every
operation in question in M there is a corresponding operaticn in M'. The
two models are said to be isomorphic, with respect to the operations in
question, 1f the same conditions also hold for the mapping of M' into M.

A mathematical tocl is developed and receives spreading usage insofar
as it allows one to model with elegance one class, or several classes of
problems. The greater its success in those classes, the stronger is the
natural tendenecy to use it in other classes of problems. When a model
reaches an almest universal application it produces the well known psycho-
logical effect that people tend to think that "reality" has the frame of
that model. This is a very comfortable and practical situation, until some
recalcitrant problem requires the introduction of a new, initially "odd",
model. In psychological terms, these facts can be interpreted as the devel-
opment and permanency of mental structures derived frem cognition processes
originated both Irom perception and elaboration of internal symbolic systems.

An interesting case is the following. The power of generalization of
abstract algebra is well apparent. In the spirit of this model, a program—
ing language has been attempted for nonnumerical processes (CODASYL 1962),
The fact that difficulties have been encountered suggests that this type of
model, in its pure form, while very elegant in & mathematical context, does
not match well the common mental structures that are involved in specific

practical applications.
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2.2,6 1In éystem theory, we see three classical approaches: input‘output
response, state variable characterization, and the probﬁbilistic approach.
The last one is peculiar to certain situations in which én incomplete know-
ledge of the system is involved, and it is not relevant to the'present dis-
cussion. The other two are both applicable té the same aystems (see
Dertouzos et al, 1972). TFor the first, the main toocl ié the calculus and
the most interesting feature the feedback; the second is particularly suit-
able for discrete systems and more detailed discussion will be in section |
2.3. The two approaches are obviously derived from "intuitive" mechaniza-
tion of physical systems, and given their well-known success in varieties of
applications, both should be available, in some form, to an A-to-B trans-
formation.

More recently, complex systems are modeled in the form of computer pro-
grams. Since early time (see Minsky 1962), it was recognized that computer
programs have some modeling power not'easily achievable in the other ap-
proaches. Here the tool is a programing language. And indeed a programing
language may allow of all the other forms of modeling. There is here a clear
example of modeling of a modeling. A program can judiciously handle dif-
ferent modelings; there is a strong similarity with thinkiqg; thus computer
programs appear to be the most general and powerful toﬁl for modeling. For
this reason they are the main tool used in artificial intelligence (see for
instance Barnerji and Mesarovic 1970; Vinograd 1973).

But this power of computer-programs is obtained by simulation with a
given machine, or programing language. And here we come to the cbject of
our study, which can be expressed in the following form: how much can a
machine or a language make computer programs replicate our actual thinking,

rather than tortuously and inadeguately simulate it ?

2,2.7 We noted already the ancient use of graphic means and their connection
with the imagery of the mental processes, In recent years, graph theory had
 an impressive surge, both as an independent mathematical discipline (cf.
Berge 1968 ;: Golomb 1970) and as an interdisciplinary connective, especially
with the computer field (cf. Read 1972), ranging from modeling the behavior
~of hardware (cf. Holt 1971), to modeling progfam structures (cf. Slutz 1968).
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As usual, a programing language has been developed with particular fea-
tures that facilitate the study of graphs (King 1972). But it seems clear
that graphs have a potential for being themselves a programing language, or
a part of it. A start in this direction can be seen in Rosenstiehl et al.
(1972).

We see graphs deserving a fundamental role in a general programing lan-

guage for the following reasons:
(1) They are symbolic, in the sense that they have the same power of cate-
gorization, the same precision and permanency as verbal symbols.
(2) They are complementary to verbal symbols in that they are particularly
effective in representing situations that are not effectively representable
through wverbal systems.
(3) They can be functional and structural at the same time: a graphic means,
while symbolizing a function, can also convey information of a structure or
path, in time or space, related to the implementation of that function.
(4) They constitute effective representations. Graphs have a wealth of
properties; if these properties are made to correspond to the properties of
a programing language, a very effective representation is achieved,
(5) As a language, they evoke the imagery system of the user, with all the
related heuristic power. The geometrical intuition of the programer will
very likely help him to find a solution for modeling his ideas, undoubtedly
will guide him in the construction of the program, and finally will give

him a facilitation for checking the correctness of the construction.
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2.3 AUTOMATA THEORY

2.3.1 Introduction

.Autoﬁeta theory‘ean be'considered'the branch of systeﬁ theory that
deals with the.dyﬁamic“behavior'of'diecrete pafaﬁetér”éjstemé.rrﬁeceUSe dis- -
cretization of'parameters is aﬁ'extremely-pradtieal schéﬁétiﬁatibh,'end‘dy4
,namic behavior is the most revealing 1n51ght weé ‘can have 1n a varlety of
systems of completely dlfferent natures, 'automata theory is grow1ng autono-:J: 
'mously, with inextricable connections w1th many other disciplines, and w1th—
out a possiblllty to define convinclng boundarles. For these reasons, a
'_ collectlon of dlfferent:aspects of automata theory is discussed in this
section. o o e S o _ . |

‘There "is no question that many notions peculiar to automata theory have :
been- used, 1n one form or in another, in past sPeculations and practlcal apw‘
'pllcationq. An example available in the 11terature is the work of Kutti
(1928) for extracting and- representlng the essentlal behav1or of complex
telephone gystems, regardless of the. actual devices used and contlngent de-x
"~ talls. However, the’ present comprehensive viewpoints of automata theory, which
'joins'mathematlcal rlgor with a satlsfactory 1ntuition, appear as a- recent
“acquisition. The starting of eutomata'thedry'can'be placedmiﬁ_the>Turiﬁg's
© (1936) inttroduction of a "machine" (abstraet) ds a constituent of mathematics.
The only posgiblé'way to‘ascertein the computability of e ﬁethematica1 func=
tion was found ‘in the behavior of a machine. ' Undoubtedly, that event enlarged
the context of ‘mathematics. . - .

In a completely different field, meurology,’ ‘the need arose for’ formal
modeling (see section 2.5.4). The growing field of digital circuits was de-
manding a general characteriration of dynamical behavior (Huffman 1954),

Then, automata theory became a recognized field with the-puﬁliCation-of'"Auto;
mata Studies” (Shannon and McCarthy 1956). At that time, mathematics, system’
theory, artificial intelligence, neurology, and formal expressions"were‘al-
ready reciprocally involved. Moore (1956) gave the first explicit presenta-.
tion of an automaton as a formal structure for modeling devices. 1In refer-

ence to .the subject of the preeent report, this three—page paper appears to
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be a beautiful example of collaboration of psychological fertility of the
human mind (the development of a new mental approach), of mathematical rigor
(the lecgical features of the model), and of adherence te the real world (the
"unknown devices').

Mealy (1955) showed the use of fhe transition function for structuring
the output. Wang (1957) started the increase of efficiency of Turing ma-
chines. Hopcroft and Ulman (1967) showed a way of generalizing automata.
The connection with language was discovered-Etﬁaﬁ;ky-igﬁiicm_iigmégbﬁg;t;;;“%wi
of finite-state machines were scon organized (cf. Gill 1962). The alge-
braic aspect were brought in light (Hartmanis and Stearns 1966). Most use
of autcmata develcped in mathematics (cf. Minsky 1967), in digital design
(cf. Hennie 1568), in formal languages (cf. Luce et al. 1963; Ginsbury 1966), .
and in neurology (cf. Leibovic 1969). Comprehensive treatments can be found
in Booth (1967), and Arbib (1969), among several otbers. The field has such
fertility that several symposia and numerous papers and books are produced

every year in connection with notions of_automata.

2.3.2 VFunction and structure

One of the peculiar characteristics of automata is their dual aspect:
functional and structural. For every "automaton" formally conceived in some
mathematical form, it is possible to devise some operational structure (ab-
stract) that implements an identical behavior. For every "automateon” con-—
ceived as an operational structure, it is possible to devise a formal ex-
pression that produces an identical behavior. The pioneering work of
McCulloch and Pitts on this issue, in a neurological context, will be dis-
cussed separately in section 2,5.4, Each author that treats autcmata theory
gives his form of demonstration of this correspondence. Kobrinskii and
Trakhtenbrot (1965) give particular consideration to the issue.

Mathematical modeling and structural modeling appear to be equivalent,
A mathematical function and its corresponding Turing machine are indistin-
guishable, or, more properly, they are two different representations of the
same "object"; and for the mement we do not discuss if we might Lave a more
essential insight of it. Therefore, we consider it meaningless to inqﬁire
whether an "automaton" 1is a mathematical object that can be simulated by
an operating structure, or an operating structure that can be represented by
a formal expression; an automaton is simply a notion that has those two

aspects,
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This~property of“automsta has’two'important applications: (1) The syn- .
'thes1s of digital machines for performing given functions expressed in some
‘symbolie form; and.(Z)AThe characterization by means of formal expressions
ofnthe;functioning of given machines. Several'proeedures arejavailahlE_for
obtaining'theseutransformations'in sereralfclasses:of'funetionsiand;devices
t(cf;_KoBrinskii‘and Trakhtenbrottl965; Harrisonﬂ1965).--vaiously, therefare
several solutions, depending on the -type of.operational-elements and type of

- structures used, ‘Note that:here there is a ‘tecursive procedure; each’ element

T considered can be in turn treated either as.a - new’ formal expression or as a

'further structure of. ther elements. In order for the system to be universal

‘. there is a minimum operational complex1ty of the elements, for each class of

structures and dev1ces such as. Turing mathines, cellular. automata, ‘and digi— X

tal circuits.

' 2 3 3 Formalizations -

The dual- aspect of automata, funetional and structural discussed in the
'previous peragraphs implies the treatment of the several machines by purely
"formal means. A varlety of oifferent mathematical models have been formalized
'(cf Ginsburg 1962; Kelson 1968) . _ _

An example: of such formallzations is the uefinition of a finite-state -
‘machine as a’ quintuplet [S 1, 0, g, - A], where S 1s a finite set of state, I

a finite set of input symbols, 0 a firite set of output symbols, o Sx1+5§
the transition function that’ maps the present state and input symbol into the
next state, and x :“t x 1 - 0 the’ output function that maps the present state
" and 1nput into an output symbol . The mapp:ngs o and A are given in some sym—
bolic form, or simply as a table. often a graph representatlon is of _great
help in’ visuallzing these functlons. It 1s 1nteresting to note. that even in

these purely symbolic treatments it ‘appears again, as most effective, a

representation’ “in the form of a symblosis of graphlc means’ and verbal symbolsv
that we saw preferred in differert human act1v1ties and different epochs.

Very 1nterest1ng relationships have been- shown (Hartmanis and Stearns
1966) between abstract algebra and structural realizations of automata. The

technlques of algetra suggest a great potential for chatacterization, COom~ -

I position, and decomposition. However, it does not seem that algebra can eas-

'ily tell all the story of automata. The;following'comment is interesting
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(ibid. p. 18 ): "We have found that it is often useful to think in terms of
a little machine chugging away from state to state rather than in terms of
abstract seta and mapping. For this reason, we now incorporate this view
into our formalism."

The notion of automaton seems to be able to capture what is essential,
common in the warious mathematical or structural formulatioms. It would
therefore appear the best vehicle for solving the questiom, as Arbib (1968)
put it: given a problém, what is tlie computing structure best suited to it?
Von Neumann (1948, 1958, 1966) was envisioning a general theory of automata,
as a new formal tocl, that could serve computers, neural systems, and dynam—

ic systems.

2.3.4 Automata and languages

Automata can be seern as acceptors of input sequences that recognize cone
sequence from others by geoing into particular states, or producing a particu-
lar output. They can be seen also as generators of output sequences, under
different input conditions. Input and output sequences are strings of sym-
bols. Thus automata can be seen as recognizers or producers of symbol
strings, a fact that associates automata with formal languages. Because
languages are also defined by grammar, a correspondence between automata and
grammar results,

These relationships had given automata a new facet, and opened a new way
for modeling languages. The approach appears completely general; to finite-
state automata, push-down automata, linear-bounded automata, and Turing ma-
chines correspond finite-state languages, context-free languages, context-
sensitive languages, and recursively enumerable sets, respectively.

To the extent that a formal language corresponds to a computer program-~
ing-language, the string of symbols produced by an automaton can constitute
a program (i.e., the string is interpretable as describing an automaton, the
process in question).

Insofar as a formal grammar can be a schematization of a natural gram-
mar, an autcmaton can be an element in modeling natural languages, but its

productions are well far away from natural utterances.

2.3.5 Connection with psychology

The notion of automaton can be concretized in many other different

contexts. Just to summarize, automata can be consldered as: functions,
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halgebraic-systens, logic systems; constructs;.dynamic syStems, seduential ’h
machines, logical networks, languages, expressions, prograns,-orrgraphst ”It'
. is often said that automata have several facets. A characterization -cdpable
'.to be consistent with all those facets- might be. a system of mechanizations.
;_We can.note‘that different-classes of automata perm1txd1fferent:types

- of behaviors, . computations,-processes,'operations; ‘Each class of automata

o .is derlved by 1ntegration and grouplng of automata of other. classes., Analo-

gies with Piaget J developmental structures discussed in: section 2. 1 are
‘striking _ : - ‘ . . R

" Given the’ variety of contexts in which intellectual activ1ty arrives to‘
‘the considerstiou of automata, we-conJecture,the.follow1ng interpretation.

._What‘are called "gutomata" (with all the'difficulties“to .establish a general

'--definition) are the external corre3pondences of mental structures that we.

use 1n varieties of mental processes, structures that are more involved in
thinking than those corresponding to each single mathematical model; struc—.
“tures that are deeply imbedded with the system of 1magery, and perhaps sup4
fported also by sensorimotor substructures._ _ _

Rather than viewing automata as multifaceted objects,'we may more ap-
jpropriately regard ‘them as general purpose tools of our mental processes'
:used in. many classes of 81tuations.; Can a system have a model of itself?
Von Neumann (1966) showed a procedure in self—constructing automata' Minsky
”(1965) elaborates on ‘the issue. ' The dual aspect of automata is obv1ously

due to the characteristics of our thinking, very likely the same character- :

istics that brought Piaget to hypothize the two. symbolic systems, the verbal

_system and 1magery.

' If thls is so, automata appear the best candidates for constltuting the
framework of a general-purpose computer programing—language._ The user models
in this frame the various information he has in mlnd about ‘the intended pro—

cess, and_then, expresses the model directly_in that form through—somesmeans(*):

(®*)Note that in conventional programing, a double modeling occurs, The process |
is first understood, mechanized (modeled) in the user's mind in some form (a

_ first automaton); then, that model is remodeled in terms of a given program—
_ing language (an automaton ‘to produce a sécond automaton); and

finally, the user expresses the transformed model (the second automaton)
through some means of verbal structure. In our approach, that will be elab-
orated later, we imply an automaton that is the user's original conception of
the intended process, and means that allow him to express it directly.

o
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The power of the automata framework is in its completely symbolic nature, the
symbols (input, output, states) may correspond, ag in thought, to simple ele-
ments or to other complex structures, Moreover, 1f an automaton is produced

from the programing activity, a structure for implementation is readily avail-

able, because of the inherent structural aspect of automata.

2.3.6 Interchangeability between program and machine

Burks (1963) shows that a Turing machine M*T = M*PTA composed of a fin-
ite autcmaton M, and a tape T comprising a finite program P and a blank un-
limited portion A, can be substituted by a new Turing machine Mi*A composed
of a more complex finite automaton Mi and a blank tape A. Thus, all the
computable numbers can be computed by a machine without program, but with
appropriate finite automaton. In essence he points out two ways for obtain-
ing universal computation: by varying the program in a fixed automaton, and
by varying the automaton with, so to speak, a fixed blank program.

Then he recalls that any finite automaton Mi can be substituted with a
description 3>(Mi) on the tape, such that a Turing machine Mu*x)(Mif“A com-
posed of a finite universal automaton Mu’ the description I)(Mi), and a blank
tape A , can simulate the behavior of the machine Mi*A .

In these terms, then, he discusses the interchangeabiliiy between active
information (the description of Mi), and passive information (the description
of the program P). Then, from this theoretical general frame, he points out
that there are potential advantages in using active information more exten-

sively than the passive one, and made the following suggestion,

5. A Machine Design Language and Automatic Programming

The idea of an automatic programming language is a commonplace
now and it is customary to teach this language to the user of a ma-
chine, rather than the machine language. As noted earlier, an auto-
matic programming language is the machine language of a hypothetical
programmer’'s machine M@ with a certain organization, and this organ-
ization is presupposed in the automatic programming language. This
suggests that it would be better to teach the potential user of a
machine about the hypothetical machine Mp in conjunction with its
language rather than to teach the automatic programming language
in isolation from this hypothetical machinpe.

But what I wish to propose goes further than this,. The hypo-
thetical machine was designed to solve all problems of a very
wide class, and hence does not take advantage of the special proper-
ties of a particular problem. This limitation is inherent in the
idea of a general-purpose computer. For many problems it is easier
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to- think of the problem in terms of a special-purpose computer
- especially designed to solve that problem. In doing this one will
. not be distorting his natural way of formulating a problem to adapt
it to a particular computer. Instead, he can formulate the al-
gorithm for solving his problem by designing a spec1al-purpose com-
‘puter analogous to the problem.

I suggest, then, that instead of always writing a program for
a problem one should sometimes design a special-purpose computer for
that problem. No doubt this suggestion seems prepostercus. But the
moral to be drawn from the work of Turing and von Neumann is that
programs and computers are, to a large extent, interchangeable., Since
this is so there cannot really be such a great difference between ‘
writing a (specilal-putpose) program and designing a special-purpose
machine as it seems at first sight. There appears to be a great
‘chasm between these two types of activities because the comparison
between machine design and program writing is usually drawn between
the long, involved design procedures which have produced our present
general-purpose computers, and the relative ease of writing a pro-
gram in a given rigorously formulated program language. But this
contrast is not the relevant one here. The engineering design of an
actual computer involves much more than the purely logical design of
the computer, and this purely logical design is constrained by these

. engineering considerations. Moreover, in writing out or diagramming
the logical design of a computer one does not have available a rigor-
ously formulated design language comparable in. power to the best cur~
reni automatic programming languages.

Hence my proposal invelves the development of a framework or
language of great expressive power for specifying the logical struc-
ture of any computer. Experience in machine design and the use of
flow charts for programming suggests that this language be diagram-
matic as well as symbolic. Moreover, it is feasible to build a com~
puter which can scan a two-dimensional diagram, so that the design
of a machine . in this language can be fed directly into the manu-
facturer's machine Mp.. In other words, in designing a machine M cne
is writing P(M) in the proposed machine design language. The machine
My must be told how to interpret the expressions writtem in the
machine design language--this calls for an interpretive routine J. To
summarize, when one is interested in a computation N(M*D"A)} he writes
D (M) and gives it to the machine-program complex My*J. The number
nMy* (MY DAY, which equals n(M*D"A), is then produced. (+)

Thus, my proposal. involves, first, the development of a rigorous—
ly formulated machine design language, and second, the development of
a routine  for the automatic tramslation of expressions in that lan-
guage into the machine language of the actual machine My. These two
steps are, of course, the same as those required for the development
of an automatic programming system Mp*D(Mp): the machine language
corresponding to the programmer's machine M, must be worked out and
the interpretive routlneﬂ)(M ) must be written. Likewise, the use of
the automatic system Mp*g is similar to the use of the automatic pro-
gramming Mmﬁb(Mg) In both cases one is given a problem. To solve
the problem with Mp*9 he writes a descriptiond (M) of a machine M
which is equivalent to that problem. To solve the problem by means of
Mp*D(Mp) he writes a program P which is equivalent to that problem.

(¥ D SYﬁbqliz&s data.
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The systems Mﬁ*éfand MﬁﬁD(Mb) operate on different levels of
the hierarchy of Turing machines introduced earlier. It will be
recalled that the universal machine M, uses one block of input in-
formation to simulate Turing machines with blank (tapes, M,! uses
two blocks to simulate machines with one block of input information,
My2 uses three blocks to simulate machines with two blocks, etc.,
etc.),In this hierarchy My*J 1s a case of Myl, as is shown by the

formulas
n(Mp*Fa(M)"D7A) = n(M*D™A)

nM A TI7A) = 5 (MKTTA)
and My used with;D(H?) is a case of Muz, as 1s shown by the forumlas
n(My*D (M) PD7A) =y (M *P"D™A)
N 2* DM I TA) = v (MAT T A).

There are many possible approaches to our proposed machine de-
sign language. We will briefly indicate an approach which is sug-
gested by von Neumann's cellular self-reproducing automaton but
which diverges from it in a number of important respects. A finite
of growing automaton of any power may be stipulated as the contents
of a cell, provided that the specification of the automaton, either
directly or via a chain of definitions, is reasonably simple. Thus
one cell could store a number, with the understanding that the cell
can store as many (finite) digits as the number has. For example,
if it stores a ten-bit number _ to begin with and iz to store 2,

_}, _4, . « . at various stages during the computation, the cell will
automatically grow in size so as to accommodate the extra bits that
are produced by successive multiplications,

In specifying a problem by means of a special-purpose computer
one would assume as many serial stores, parallel memories, control
units, etc. as was convenient. Data could be organized into blocks
in natural ways. The control automata stipulated could direct opera-
tions like: sum the series in block A, monotonize the data in blocks
B and €, withdraw from memory all sequences having property ¢, etc.
There would be provision in the machine design language for defining
new automata in terms of old ones, so once an automaton is specified
others can easily be designed in terms of it.

Von Neumann has a fixed e¢rystalline structure for his cells. We
propose to allow new cells to spring up between old ones under the
control of the computation. Suppose a list of words is stored in bins
and at a later date new entries are to be inserted. This change would
be conceived as an automatic process of inserting new storage bins
between the old ones. This change must, of course, be accompanied
by an appropriate change of the switches which comnect these bins to
the rest of the automaton. In general, storage and computing facil-
ities would be created wherever needed and in a form suited to the
problem being solved. Hence a batch of information would not be
stored in a homogeneous memory, as is the case in current computers,
but in a memory organized to reflect the organization of the informa-
tion itself. That is, the memory would be divided into categories,
subcategories, etc. in natural and useful ways, cross—switching con-
nections would be assumed where needed, etc.
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_ Current computers- are organized into large, -specialized units
such as memories, arithmetic units, and controls. The reasons for
this organization are to be found in the nature of the components
from which computers are built. Since the speclal-purpose computers
to be designed in our proposed machine design language are not to be
built, there is no reason for organizing them in. the conventional way.
Rather, they should be organized in whatever way best accommodates the
problem at hand. Consider, for example, a two-dimensional partial dif-
ferential equation. It may be convenient to solve this equation by
computing the value of a funcrion at all. grld p01nts 91mu1taneously,

_in which case the special-purpose. computer should be organized to do
this. It should be clear from the foregoing that in our proposed
machine design language one could formulate. machine organlzatlons
radically different from present ones.

In conclusion, let us review briefly how onte would use the pro-
posed machine design .language. It would be most effective when . ap-
plied to a problem capable of analog treatment, i.e., whose structure
may be paralleled by the structure of a speclal-purpose computer which
will solve the problem. In such a case the mathematical equation '
describes the behavior of- a_phy51cal model. . To. spec1fy the solution
of this equation one describes. in the;machlne design language a
special-purpose computer which would operate analogously to the given

- physical model. The description of this special-purpose computer is
supplied to a general-purpose computer which translates it into. its
ownr machine language and then solves the problem. C

Whatever the pract1cal feasibility of this. proposeu system, 1
think that the theoretical p0551b111ty of it illuminates Turing's
and von Neumann's results on universal machines. '

_ The results that Will be shown in chapter 6 1nd1cate that the suggested
‘.approach is notlonly of & theoretical interest, but aeems to ‘have also a

tremendous practical potential..

2 4 CELLULAR SPACES. AND COMPUTING STRUCTURES

2. 4 l The consideration of ax1omat1c, dlscrete spaces having certaln proper—
ties (cellular spaces, or,tesselat10n),prov1des us Wlth another way ‘to develop
automata. ‘ ' -

In a cellular space each cell has a tinite set of states, usually in-
cluding a qulescent state; a tran51tlon functlon gives: each cell the next
state as a function of the present states in that neighborhood a cell 1n the
quiescent state, surrounded by cells in the quiescent state, should have the
qu1escent state as the next state. “For reasons of 81mp11city, almost exclu-
51vely uniform and unllmlted spaces, and determlnlstlc functions have been
considered. If a finite set of cells are initially set to a pattern of states,
an automaton is created, and capabilities of computation and construction tan

be obtained.

-41-



2.4.1

Undoubtedly, this approach has been inspired by the biological struc-—
tures, Its study is considered a part of automata theory; its implications
extend into computing structures, chemistry, biology, genetics, and evolu-

tion.

2.4.2 Von Neumann did the first work in this field (von Neumann 1966; Burks
1970). He considered cells with 29 states and a transition function that
depends on the state of the cell in question and on that of the four nearest
neighbors. Actions can be produced by a cell to any of the four neighboring
cells, in a synchronized time sequence,
In this substratum organs can be synthesized, such as pulsers, recog-
nizers, transmission channels, wire crossings, tapes, constructing arms,
etc. With these means, finite automata and Tﬁring machines can be formed,
and their work simulated. Thus universality in computation can be achieved.
But also construction can be obtained. Having set initially into the
cellular substratum a finite configuration of states that forms a construct-
ing automaton and that contains a plan (the description of another automaton),
new automata can be constructed, in some other region of the substratum, and
l=ft to operate independently. An automaton can reproduce itself, i.e. pro-~
duce another automaton that contains the same capability of construction.
Universality in construction can be achieved. An automaton can also construct
an automaton of higher complexity than itself. Obviously, such a mathemati-

cal finding has implication for biology.

2,4.3 Moore (1962) considered transition functions depending on the eight
nearest neighbors. e showed the phenomenon of Gardens of Eden, configura-
tions that can exist only at the origin.

Codd (1968) found universality of computation and construction with eight
sStates and dependency on four neighbors. A two-state cellular space can have
universality in computation and construction but not with dependency on only
four neighbors,

Yamada and Amoroso (1969, 1971) introduce a general d-dimensional tessel-
lation automaton defined as a quadruplet: the dimension d of the array of
cells, a neighborhood index, a set of states, and a set of next-state func-
tions. 1In essence, it is an infinite regular array of identical finite-state

machines with a transition function that can change from step to step, and is
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-un1form for all the cells. Then they formalize a structural and behavioral
- iso— and homomorphism for this type of autamata.' .
l _ Grosky and " Tsui (1973) expand further the: analysis of tessellatlon auto- .
-mata by c0n31der1ng spat1a1 non—uniformlties.f Moreover, they consider under ‘
- a unified formalization both sequential and parallel transformations.,; _
:. It is 1nstruct1ve to observe that in Turlug machines data structures and
-operational structutes are well distingulshable - the tape and the finite-
'State part. In cellular automata instead data and operational structures
are inseparable, operational structures come ‘out by structuring data in space
iand data structures are the result of operational structures. ;Of. course, in -
certain instances, a structure can be seen as stored data, or “as’ an operating
'. rdev1ce. Cellular automata ex:l.st 1n an env1ronment (substratum) made of the
'same elements ‘as themselves, they differ from their env1ronment only in that
they are organized", whlle the envxronment is not (Burks 1970)
: In the last generalizations, tessellation automata, from spatiotemporal
!_structures (as they were at, the origin), become purely mathematical structures
completely disconnected frcm any geometrlcal 1ntu1t10n of the convent10nal

space.;;r‘ '

‘2.4,4‘ Hollandl(lgﬁb Pl965)rhas formalizedja class of substrata in which the.

- single cell has storage and. operational cdpacity. - It is a- homogeneous, dis—

crete, unlimited space, ‘thought as an array of modules, defined by a quin—'
. tuplet . - '
[AA",XfP] .
where: A\determines the geometry of the ‘discrete spacey eﬁg; the-dimension' A®
determines the standard neighborhood or connectivity available to each module;
X determines the storage capac1ty of the module' f determines the operational 7
' characteristics of the module; and P determines the. psth—building (addressing)
capablllty of the module.‘ A spec1f1c quintuplet characterizes a partlcular
‘ space. This class of spaces admits representatives structurally and behav1or—
ally equivalent to Turing machiues (with one or more tapes), wvon Neumann 8
| cellular automata, logical nets, and potentially infinite automata. '

In particular, Holland has cons1dered spaces with a potential commectiv-
ity (construction.of paths) by which a cell can affect another cell in one
time step, regardless of the distance. Thus, this space is more efficient

than the von Neumann tessellation. In this' space, a finite automaton is
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defined by a quintuplet

[I, s, 0, £, u]
where I is a finite set of inputs (the ensembles of signals at the input
lines), S a finite set of states, 0 a finite set of outputs (the ensembles
of signals at the output lines), f: IXS + 8, and Uz IXS + O the transi-
tion and output functioms, respectively. He uses these means for studying
adaptive systems. In one approach (Holland 1970), a hierarachical organ-
ization of schemes of blocks at different levels is used; at each level, a
block is considered as a primitive, and can be substituted for a better one,
provided that it satiéfies the input—output interface. Initially, a set of
automata acting as generators is given with the capability of measuring the
success of operations within themselves in relation to the environment. Then
the automata duplicate and generate new structures. The construction pro-
ceeds by grouping and integrating blocks at the different levels. (Similar-
ities with theories in section 2.1 are remarkable,)

This approach is interesting also because it shows the possibility of
describing automata implicitly. Rather than giving the description of all
the possible occurrences in an automaton, a set of generating elements and
relations on their production, or growth rules, is given. Typically, an im-
plicit description is more compact than an explicit one.

On the same line, a computer structure capable of executing an arbitrary
number of subprograms simultaneously alsoc has been described (Holland 1959).
It consists of a two dimensional grid of identical, synchronous processing
modules. Each module has a storage register, a certain number of auxiliary
registers, and associated circuitry. Each module can exchange data and action
signals with its four nearest neighbors. The storage registers contain in-
structions or operands, the auxillary registers contain the state of the
module and other control information. At each time step (a cycle of the com—
puter) there are three phases: (1) the modules may acquire new data from
outside; (2} communication paths between modules are established (that may be
also conservation of previocus paths); and (3) the prescribed operations are
executed. A module, from inactive, can become active, transfer the action to
a neighbor, and become again inactive; the predecessor and successor are in
space rather than in time. Several independent or interactive routine (cor-

responding to paths) can be executed simultanecusly in the array. In a sense,
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- & 8 is a spat1a1 counterpart of a plurality of 1nterconnected Turing machines
with a much higher level of actions.- S 7 o
7 From an applicational viewpoint,wthis approachvhas a‘richgpotential for
”Vvery 1ngen10us ‘problem: ‘solutions.- -However, the”structureiseems_tog-much,pref
" determined-. although completely general; in certain cases it'would appear. a .
'natural frame for. the problem (e. 8 tWU—dimensional numerical models), nd
in many others it would require ‘an extensive: remodeling of the problem on .
the part of the: user or a- campiler.~ In regard to the utilization of the .
1modules (efficient use of the eventual hardware), this approach seems not
.favorable, unless a different level of automata theory, :such as that. needed
for understanding biological proces31ng systems, could give the structure a b
_different power. However, the real. difflculty does not seem to. be 1n the,‘
‘number “or in. the utilization of. the elements {in view - of the present or.
future technology), but in the formidable task of programing (cf. Comfort
‘1962)  To help this" task the concentration of arithmetic power in .a. few
,_modules has been. also considered (Comfort 1963) '

2 4, 5 More in the dlrection of macromodules is the SOLOMDN computer (Slot-
nick et .al. 1962). It is an array of 1dent1ca1 proce331ng elements working

in parallel under the supervislon of a central control unit, 1n.anuarrange~
~ment that can simulate. directly the problem being solved" ,The,quotedjsene
tence.shows.the main aspiration of thls,solution,- which is.clearly relevant
to our goal. The work related to the SOLOMOﬁ.computer'has been a contribu-
“tion to the ILIAC IV computer, but it did not produce a new line of general—
rpurpose computerS' we here discuss from ouy viewpoint the potential and 11m—-
itation of this approach , : . L '

‘ The problems to which SOLOMON was perticularly addressed include paral—f'
lel computation in mesh polnts, for these operations, ‘the array of processors,.
capable of direct comvunication with the four nearest neighbors, and execu- -
ting broadcasted instructiouns, constitutes a: very efficient structure well
matching the characteristic of the problem. But, at the same time, this
pre—establlshed configuration of the array causes a very low performance

when - the problem has a different structure. Because the processors‘are so
numerous,_they are inevitably-simple for obvious_reasonS'of cost; thus, whenr
an operation;would demand e-sophisticated‘prOCessor, either the execution is

slow, or complicated programing'is required for compensating by using'several
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processcrs. The memory Is subdivided in sections attached to each process-
or; while this solves the problem of access to the many processors, in other
respects there is less flexibility and utilization than with a single main
memory. Input and output are provided at the edges of the array; for par-
ticular problems, this is a completely satisfactory situation, for most
problems, it involves additional transfers and pxograming. In summary, the
approach is valid for a particular class of problems, but it has not appeared
as an efficient sclution for a general-purpose use, in terms cf both hard-
ware and programing effort.

For the specific application of receognition of patterns in a surface,
Unger (1958) had considered a processing structure compcsed of a two-
dimensional array of modules that make bit by bit operatioms.

Recently, the interest for array structures has a revival because of
possible application of their properties to integrated electronic substrata
{see for example, Minnick 1967; Akers 1972: Jump and Fritsche 1972).

Further ccomments on cellular spaces will be made in section 3.4.3.

2.5 INFERENCES FROM NEUROLOGY

2.5.1 Introduection

The neural systems of living creatures are considered to be the organs
mostly responsgible for their sensorimotor processes and psychological activ-
ities. Thus it is plausible to expect a correspondence between these activ-
ities and neural structures. While for the vegetative functions and the
elementary sensorimotor processes specific neural structures are clearly dis-
tinguichable that perform specific functionms, the functioning and the struc-
tures of the neural system becomes more and more elusive when higher level
activities are considered.

Cne would naturally think of an analogy with computers, where no resem-
blance can be found between the structures of the different processes per—
formed and the structure of the hardware that performs them. It is only
through the notions of coding and of hierarchical layers of virtual struc-
tures that the relation between structure and function can be recomstructed.
However, there are fundamental differences between computers and neural sys—

tems. Neural systems have undoubtedly some probabilistic aspects. while
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computers are completely. deterministlc 1n their functioning. ﬁeural systems
have the capability .of structural self*organization, a capability unknows - to
computers. . Moreover, the organization of neural systems appears completely
'different from that of computers.r Thus -the interest for our study .to look"
into the structures and- functioning of neural systems especially for: the
high level activitles.‘. _ L
It is- assumed as a fact that psychological activities, regardless of .
their,level, ‘base their existence in the neurological substratum. . However,
‘the connection between the two is-so_poorly-knownjthat itjcannot be analyzed
_:directly..rAt‘present,”psjchologistsflook.for-understanding:nental'proeesses
-.through'psﬁchological'experimenES'and.modeling'theories,’neurologistS“Studyr'
_ structural and physiological aspects of the neural systems; and finally
' neuropsychologists attempt to make 1nferences between the- findings of those '
© two fields Among ‘the: most interestlng questions involved beside the epis-;'
‘temological problems, there are. the nature of . cognition and . knowledge, the -
'cause of evolution, and the‘ necessity" of logicomathematical structures. -
The notion of cognition as’'a’ process between a receiving structure and :
signals from the environment (see sectlon 2.1. 2) brings Piaget (1971) to con—

sider knowledge not as-an additive accumulation of experience, but as a.

o steady improvement in cognltlve instruments._ As an example, the functiouing

' of the cortex, which is hereditary insofar as: the genetic substratum that
:permits its functioning 1s concerned (the development achieved by the differ—

ent species is rather precisely determined) is completely evolutionary as
'cognitlve structure.¢ The acqulsition of knowledge is vieWed mainly as a de-
' veloPment of structures.‘ '

‘ As for the cause of evolution, after’ the two. alternatives of Lamarckism
(structural changes produced by changes in the environment) and of Darwinism
(natural_selection_produced by the survival of the fittest), the ‘hypothesis
,'of'autoreéulation'seems nore satisfactory.l It is a general autoregulation

{loc. cit. ) ‘that occurs through cognitive processes between the organlsm,‘

where the nervous system is the main organ 1nvolved and the environment. It -

- s an equilibration in the search for closure of the open system of the or- -
"ganism plus environment. | _ _ ; ‘ B h ‘
In regard to the "necessity™ of ‘logicomathematical structures, Piaget.

(loc. cit.) presents the fascinating hypothesis that this'fact;is a highly
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differentiated extension of biological gemeral autoregulation. Logicomathe-
matical structures are frames that permit equilibrium and closure in their
exchanges with the environment (from which the appearance of pertaining to a
physical world), and in the reflective constructions of thought (from which
their appearance of "necessity'). They do not exist per se, but emerge from
the functioning of the mental structures, as soon as the functioning is used
for solving problems (that is, reaching equilibrium and closure). Thus log-
icomathematical structures are endogenous developments. They are similar in
the plurality of individuals because of a similar genetic substratum and
similar stages of development. But because they are developments, these
"universals' are also open to evolution. This view encompasses the previous
philosophical views of innateness, and derivation from an outside world.

In this context, the question is not one of searching for a direct iso-
morphism between psychological and neural structures, Cerebral functioning
should be seen as an expression of very generalized forms rather than of
particularly organized forms at independent levels. As an example, neurons
are capable of precise logic functions since birth, but the child is not;
then, the child develops sensorimotor schemata that contain some relation-—
ships but which are still elementary by comparison with the logic of neurons.
It is only after twelve to fifteen years that logic operations become possi-
ble for the individual, and they develop to a much higher complexity thanthat
of the known neuron functioning. Moreover, there is the fact that on the one
hand, entire classes of different physical structures can correspond to each
function; and on the other hand, different functions can be performed by a
given structure. Precisely because of all this, an examination of the neural
system has a heuristic interest for the present study, particularly in refer-

ence to the central neural system, which is related to the higher level func-
tions,

2.5.2 A look at the central nervous system

In mammals, the vegetative functions are regulated by neural systems
located in the spinal cord, hypothalamus, etc., and constituted by well de-
finable, specific structures. On the other hand, for providing the so-called
higher functions, there is a sophisticated neural system, referred to as the
central neural system (CNS) located in the cranial box, the brain, composed

of structures with a high self-organizing capability. The CNS of man is

—48~



2.5.2 .

characterized by haviﬁg a significant portion initially in an apparently
uncommitted structure, which slowly self-organizes with the development of
the individual. ' o '
Structurally, the human brain is about one pound of material composed
of a large number of cells and fiber bundles. A few of these cells (however,
about 30 billion), called néufons, have a well recognizable structure and
.have some agpect of their funcfioning known, The most numerous type of‘célls,
;called glial cells, have practically‘unknown roles in addition to providing
a metabolic function between blood capillaries and neurons, and the myelin-
- ation (isolatlon) function to the neuronic structures. The external shape
of the brain, with its lobes, convolutions, and flssures, has a phylogenetic
derivation, as it can be inferred by biogenetlc law from the development of
'fhe.embryo. _ ' ' : ' '
From the-viewPoint of our stﬁdy, there is a‘heuristic interest in the -
neurcns, about which a degree of knowledge is avallable, ‘in the functlonal
structures of the cerebrum, the strategics used, and the interpretations and

hypothesis that are given.

Neurons have several, but charactefistic,.shapes and sizes; they-have-typi-
'cally several ramified btanches, called dendrites,'which-can be thought of

as inputs; and one, typically long, conduit, called the axon, that can be
fhought of as an output cable, Neurons have chemicoelectriéal processes by
which, in first approximation, they act as threshold devices; when certain
~input conditions are exceeded, an impulse iS'prodﬁced that propagates along
the axon. The functional aspect emerges from interconnection; the inputé ‘
of each neuron are connected to outputs of other neﬁrons,-and some to sensory
cells through chains of other neuroné; the output of each neuron is connected
to the inputs of many other neurons, and some to muscles'thfough chains of
otherrneurons. :

- The main peculiarity of the neural network seems to be in these connec-
tions, called synapses. They are points of contact between the axon (output)
of a neuron and the dendrites (input) of other neurons. In few cases thgj
‘seem to produce a direct electrical contact; as a rule, they aré constituted
by a thin - less than 1 micron - membrane at the contact of the dendrite and
the axon, where small packets containing few thousands of molecules can be

released. A synapse can have either an excitatory or an inhibitory effect.
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"Nearly every synapse that has been carefully studied has been proven to have
unique features" (Eccles). 1In the CNS a neuron has typically several tens of
thousands of synapses. Clearly, such a substratum is suited for an extreme-
ly large variety of structures, for any degree of detailed variation, and it
can easily cope with malfunctions of single elements. The complexity of
functions that can be performed even by a small group of neurons in the cen-
tral neural system can easily be inferred. In the human cortex alone, there
are more than 1014 synapses,

Ever since Galvani's experiments with frogs, ;here has been assumed a
connection between electricity and the nervous system; but it was not until
the 1930's that Hodgkin‘was able to produce the first amalysis of it. Also
chemical transmission was first proved only in the 1920's by Loewi. A col-
lection of the main contributions to cellular neurophysiology can be found
in Cooke and Lipkin (1972). Studies on synapses can be found in the numer-

ous publications of Eccles.

The cerebellum - A specific, region of the brain has recently been studied

in its structural/functional aspect —— the cerebellum. It provides for‘the
regulation of movement, autonomous and voluntary; it receives information
from the higher centers cf the brain (the cerebral cortex), and coordinates
the muscular movements responsible for behavioral acts.

Structurally, the cerebellum has a layer (A in Fig. 4) of Purkinje
neurons {(labeled 1) very rich of dendritic branches (inputs), and a layer
(B in Fig. 4) of granule neurons whose axons (outputs) extend in parallel
fibers (labeled 7) running through the dendritic region of the Purkinje
neurons. Moreover, scattered in those layers, there are three other types
of neurcons, the Golgi, the stellate, and the basket:cells (labeled 2, 3, and
4, respectively) which synapse in the same network. Each Purkinje neuron
has up to 200,000 synaptic contacts. The dendrites of the granular neurons
synapse with one type of the arriving fibers, and the axons of the furkinje
neurons are the ocutput fibers of the cerebral cortex. Another type of
arriving fibers synapse directly with the Purkinje neurons.

The functioning of this extremely intricate network can be seen global-
ly as dynamic patterns of inhibitions in a multitudinous bombardment of pulses,
at specific regions of the cerebellum for the different parts of the body.

These patterns are learned with exercises; at birth, relatively few synapses
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Fig. 4 - Structure of

the cerebellum in man
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2.3.2
exist in the dendritic region of the Purkinje neurons; repeated sequences of

"spines") that produce a progressive-

movement induce new synapses (Eccles's
ly more refined control of the movements. Each individual forms a personal
endowment of "spines" that gives the individual motor ebility and style.

It seems that here the spatiotemporal frame develops, from the lifelong
coordination of movements toward goals. It would be of interest to see which
neurological counterpart can be found for the role of spatiotemporal frames
discussed in a psychological context in section 2,1.3. There are many exper-—
iments that show that formal thinking is accompanied by imperceptible muscu-

lar movements (e.g. eye movements), as if we were dealing with objects having

an actual spatiotemporal structure.

Cerebral cortex — The cerebral cortex is a highly organized part of the CNS,

that probably exhibits to the highest degree a self-organizing capability,
In man it constitutes the largest portion of the brain.

Structurally, it is composed of neurons arranged in columns and layers
{(Fig. 5) surrounded by glial cells and blood vessels., S8ix layers are gener-
ally recognized, the fifth of which contains mest of the pyramidal neurons,
the type more characteristic of the cerebral cortex, The axons of these
neurons constitute the cutput fibers, which go to other regions of the cor-
tex and to the outside of it; the input fibers, from other regions of the
cortex, split in branches between layers V and VI, and between the II and
I1T layers. Other specific afferents, coming from outside the cortex, split
into layer IV. The pyramidal neurons have ramified dendrites rich of spines
(interpreted as acquired synapses) and are surrounded by axons of stellar
neurons that produce an inhibitory feedback. The neurons of a same column
seem related to the same elementary operation. This general structure is
observed in all parts of the cortex, though with marked variations.

The complex connectivity of the cortex is not significantly deciphered.
Luria (1966) sees the cortex as "an organ capable of forming functional organs";
functionally thought of as a result of comparing what was planned with what
in fact takes place.

There are some areas of the cortex that appear committed to sensory and
motor operations, with a mapping to the different parts of the body. Other
regions, the largest ones in man, appear genetically uncommitted and spatial-

1y not strictly specific. In the uncommitted regions, an area has been
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related torspeech, usually in the left hemisphere; in some individuals in'the
'right hemisphere.tr The hOmologous area in the _opposite hemisphere has been

r'related with the interpretation of spatial relationship and v1sual experi-

ences (Penfield 1965) . There has been always a search for mapplng the vari-
ous mental functions into areas of the cortex, however, this does not seem
the appropriate approach. } A : . L

' While for sensory motor functions some definite neural structures are .

distinguishable and localization is possible, it seems impos51b1e to do s0

'for the so—called intellectual activities. Hbre than a wired dlagram 13 a

question of coordination of 1nvolvement of many parts of the brain. In,
modern neuGCsychology,the concept of function is not related to the proper-

_ties of specialized neural regions and organs, but 18 understood as the prO-

duct of a temporary collaboration of- dynamic structures spread in the entire

nervous system.‘ The higher mental functions start as systems based on rela-

‘_tively elementary sensory motor processes- with development they take other_

more -direct restrueturing, dropping many passages that were related to their

_formation. There, different neurological patterns (probably corresponding

to different psychological strategies) may be found in different 1nd1viduals.

morx The learning of a function - perceiv1ng a situation and memorizing
‘it - is the most impressrve capabllity of neural systems._ The human CNS has
thlS capability developed to an astonishing degree yet its neurological
context has been the most elusive both for ‘the short term and for the long
-term memory forms. Only tentative, partial hypotheses are available so far.

From the structural studies, the synaptic theory of learning and memory

'develops (cfr. Eccles, 1964) Functions and perceptions produce spatiotenr n

poral patterns of impulses in the cortex neuronal network repetition, or )
permanency of this pattern, produees a hlgher efficiency of the synapses
involved; a stronger channeling of the pattern results, with the consequent
formation of an. engram of synapses. The fact that cuts and extirpation
of any portion of the cortex do not destrow any specific memor1zatlon makes
this theory unsatisfactory The huge amount of information that can be re-
Atained 1n the pernanent memory turns the theory to little. use.

Genetic and immunologlcal memories ‘have been explained with molecular

structures.:_Variations in RNA have been found in neuron.andlglial cells

- after learning activity. Thus a molecular theory of the psychological memory
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has been suggested, based on some hypothetical coding system. This approach
is compatible with the experiments of rats that acquire skill after injection
of RNA from trained rats (cfr, Schmitt 1968), and worms exhibit a capability
belonging to other worms they cannibalized (McConnell 1968). However, the
theory, at the present stage, does not explain how the process of nemoriza-
tion occurs.

Widespread electrical activity during learning periods, revealed by
electroencephalograms, has suggested memorization processes in which neuroms,
glials, and intercell liquid are involved (Adey, 1968). The fact that memo-
rization appears diffused in all the cerebral volume, and any new information
matching some part of the memorized content is able to recall the entire con-
tent has suggested an analogy with holograms and holophones (Longuett-Higgins
1969).

Modeling - Given the structural and functional complexity of the CNS, some
kind of simplified models are a necessity for analyzing and understanding its
performance. But, as one can expect, models of the neurological counterpart
of the psychological activities are extremely difficult and limited.

The all-or-none response of neurons and their concatenations suggested
McCulloch and Pitts (1943) to model the behavior of neural structures by means
of networks of formal neurons. This approacﬁ will be discussed separately in
section 2.5.4, because of certain theoretical implications of particular in-
terest for the subject of this report. A formal network, as are other types
of automata, is suitable of a variety of rreatments; for instance, as an alge-
braic structure;‘thus they give the possibility, at least theoretically, of a
logicomathematical treatment of neural systems, starting from their structural
aspect.

The multitude of structures that are discernible in neural systems has
suggested a genotypic modeling (Rosenblatt 1962) in which sets of rules for
generating classes of gystems are used, and then the results are compared
with the psychological behavior. Rigorous analyses have been made of possible
parallel structures that can be applied to the modeling of perception (Minsky
and Papert 1969). One interesting feature of this approach is its learning
capability (the perceptron convergence theorem) by means of a small,
intelligent kind of memorization.

The extremely large variety of dynamic behaviours that are possible in
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arrays of- active elements ' ‘has’ promoted several attempts to- model in such terms -
the: functioning of neural systems. " The reverberations of Caianello (1961) -and

"the ‘resonances of Reiss (1964) are examples.l"

After the initial formalization ‘of McCulloch and Pitts, automata theory
always appeared an interesting candidate for modeling neural behavior._slts
tain’ power, with respect for instance - to stimulus—response theories, is. in-
the elegant treatment of past histories of ‘the organism by weans of - the :
notion of - state. “Von Neumann (1958), in comparing the characteristics of
bioclogical systems and of man—made processing systems was envisionlng a
general theory of automata that could be a theoretical basis for. both
" Arbib (1968) pointed out’ ‘that the’ potential of automata theory 1ies not so'

- much in the’ modellng of actual neural structures, but in modeling the’ dif-f
1ferent aspects ‘of "the 1nformation processing involved in neural systems. '
Rosen (1969), in turn, suggests to use the automata—theoretic description _
‘1ndependently for each “of “the" several hierarchical levels that can be de= -
fined in ‘the functioning of the rieural systems, ‘in this case, “the interpre—ﬂ;
tation of state will be different at different levels.'pJ ' ' '
Cybernetic models seem ‘very appealing in the ‘light of ‘the autoregula—“"*
‘tion aspects inherent in: ‘nervous. systems, however, they -do not; 1ead to de=-

‘,tailed correspondences wrth the actual neural . structures.,__'

2.5, 3 Inferences from the central neural system

(1) Given a certain similarity of tasks between the central neural system ;T
and computers, we shall try in this section to derive some heuristic infer—\w
.ences from the former that might be of 1nterest for the latter. Obviously,
ithe solutions adopted by biological systems are not necessarily the appro~-
‘priate ones for man~made systems., Very 11ke1y, they are not, for several

' reasons. Neural systems are as they are because of an evolutionary develop-

o ment that happened 1n the epithe11a1 system from whlch they derive' computer

,design can start from any ‘approach (man-made high-speed vehicles ‘use advan~

- tageously wheels and roads, Whlle biological runners are bound to use 1egs)

: The CNS should work in the worst conditions,rfor 1nstance, when an animal

is jumping in a harsh forest escaping from a-deadly danger _computers typi—
cally are protected often belng kept in air—conditioned rooms. Biologlcal
systems are made of unreliable but self—repairlng components; man—made sys— |

.tems are made of reliable but fixed components. However, given the capa-

=55~



2.5.3

bilities of that one-pound system that is the brain, we can suppose that
there are certain directions of some kind of mathematical essentiality; thus
we may learn something or at least have some heuristic suggestions, that

might be useful also for computers,

(2 a characteristic approach in the CNS is the self-organization. New
functions are automatically produced, under compulsion of the environment,
from presently available functions. Note that the brain does not Carry a
self-construction; the number of neurons decreases during life. So far as
neurologists know, it is the connectivity that is developed. If structural
changes are indeed implemented in neural systems based on chemical-biologi~
cal processes, which require time, structural changes might be even more
suitable in man-made techmologies, which usually have much faster response.
Particularly challenging is the capability that seems present in the CNS to
restructure automatically the substratum for performing new functions more
effectively and directly, as a consequence of repeated use and time. Self-
organization 1s being tackled now in artificial intelligence, in the form of
programs; but it is completely extraneous to the conventional use of today's
computers. We can see an aspect of self-organization in the implicit de-

scription of automata mentioned in section 2.4.4.

(3) The CNS is viewed not as a collection of independent, specialized
resources (as is the rule in present-day computer analysis), but as a col-
lection of different rearrangements of the available substratum, toward the
goal of the moment. I feel rich of heuristic suggestion a neuropsychologist
view "that the material basis of the high nervous processes is the brain as a
whole, but that the brain is a highly differentiated system whose parts are
responsible for different aspects of the united whole" (Luria 1966, p.35).
This approach offers an alternative to the one used in today's computers:
that of concurrent work of different parts, with the related task of search-
ing for possible parallelism in the processes, The alternative is concur-~
rency of the different branches of the substratum inte a coordinated work for
the task of the moment, as in our thinking in which all the mental faculties
are reorganized each time for the present task. Obviously, if parallelism is
inherent in the structure of the process, that parallel structure will be
assumed by the substratum. The brain strategy seems to be far from both the

specialized resources of conventional computers and from the uniformly dis-

—56-



| 253'
tributed potential of the cellular spaces' it seems-to use the 1ntegration
of differentiated substrata, and the systemlstlc collaboration of already

.developed structures.

(4) One of the most peculiar characteristics of the neural systems is the
1nseparab111ty of data and functions° we can refer only to structures that

| account for both We. have already noted this characteristic as peculiar to
automata,,in particular of thoserealized in cellular spaces.7 This situation
is remarkably different from that of today 8 computers, in which data and

1nstruct10ns are “two disgointed entities.

7 .(5) Memory is one of the most impressive capab11it1es of the CNS. Yet,
' fneurologists have been unable to find any physiologlcal behav1or that can be
: interpreted as an addressing function. In psychological context, the con— '

.scious recall of past memories seems related to aSSociation' the subconscious

o utilization of past information has an unknown mechanlsm, viv1d revival of

: forgotten episodes occurs also by electr1c st1mulation of the uncommitted
"cortex. In some cases, it seems ev1dent that information resides in’ some |
form in the proces51ng structure itself rather than in a memory from whicn -
it is retrieved by some means._ In general it appears that’ data and opera—
_tional structures are embedded in each other. From a neurological viewpoint
[random access addre551ng seems an invention of computers, we shall discuss

this - question in section 4 3 2

(6) The "intEIligence of the central nervous system does not appear mean-

'ingfully related either to the size of the brain or to the - number ‘of neurons.

© “in if. Table 1 shows some data (Bllnkov ‘and Glezer 1968) . The only " really

'edifferentiating characterlstlc so far known is the connectivity.' After all,
a human brain is smaller and has less neurons than that of an elephant, but
has higher processing capabillties. ' S P '
‘One may argue whether a szmilar 51tuation can occur in computers. :At'
present, ‘all - computers follow the same philosphy, thus thelr power is more or
less- evaluated 'in terms of their size (memory capaclty, number of registers,
etc.). By’introducing connectivity, different philosophies can be used, and
_the computer s power might vary 1ndependently of their size. It might also
be that the use of computers is notably facilltated with a philosophy differ-

‘ent from today's approach ofﬂinstruction—obeying processor + random-access
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memory + software system. There is no doubt that the human brain is a quite
effective and versatile computer; yet, it seems that it does not use either
instructions or addresses. These considerations, expressed here very inform-
ally, might be suitable of analytical treatment. The results reported in

chapter 6 can constitute a starting material.

TABLE 1

mean weight ratio of _ number of cells
of the brain brain weight per 0.001 cubic mm
(g) to body weight of cerebral cortex
whale 6700 macaque 1/20 mouse 1420
elephant 5200 dolphin 1/38 Guinea pig 525
dolphin 1800 mouse 1/40 rabbit 438
man 1400 man 1/50 cat 308
chimpazee 435 dog 1/250 macaque 215
cat 25 elephant 1/500 man 105
mouse 0.2 whale 1/20000 elephant 69

The evolution of the brain in man has evidently not followed the line
of a quantitative increase in size, but the line of an increase in the com-
plexity of the connections between the elements (Blinkov and Glezer 1968).

In the last 10,000 years, the size of the brain of man has slightly decreased.
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2, 5 4 The McCulloch—Pitts correspondence

Certain phenomena in the neural structures present a threshold effect
“leading to & relatively easier experimental analysis.' Mbreover, these ef-.k'
‘;fects are typically related to the most. distinguishable element of the- neur—
:al structures, the ‘neuron. Thus, this aspect of the functioning of the neur-

al system.was one of the first to be. studled and was schematized in- terms. of .
-"all—or-none behav1or. A connective with the propositional calculus, and
subsequently with the emerging field of - computers, was inev1tab1e.; ,'

McCulloch and Pitts analyzed this aspect totally They published (1943)

a set of theorems prov1ng that for: every 1ogical description of a behavior it'

- is possible to determine a net of 1ogica1 neurons (axiomatic and simplified

iﬁmodels of the biological neurons) that exhlbits that behavior, and conversely,r
-;the behavior of every net of 1ogica1 neurons can- be described by means of

- propositional 1ogic.- An updated comment on this paper can be found in Fields
':-and Abbott (Ed), 1963) by Arbib. '_ o o o

| “ ; ThlS correspondence between behavior and logical nets was a milestone 1n
ylneurology, because it gave for the first time a theoretical tool for 31mu1at-

1ng the act1v1ty of the nervous systems - even that of the highest complexity,

”,_the human brain w-without the 1ntervention of - any v1talist1c ingredient. ‘Re— _

“gardless of the correspondence between the structures of the logical networks
and possible structures in the actual nervous system, the behavior of the
_latter could be -in principle, reproduced in terms of the former. The fact
that. in practice no single act1v1ty of the central neural’ system has been
'satisfactorily explained in- terms of neural networks (1n the sense of modeled ‘
hwithin a manageable Fformal network) is 31mply the consequence of ‘the’ struc— '
-:tural and- functional complexity of the real neural systems The formal net-
workl are mathematical schematizations of certain threshold phenomena and
certain relatively macroscopic structures of neural systems; in the cases in -
which these aspects play a fundamental or relevant role in the neural behavior,
the networks are a useful model' in the’ cases in which these. aspects play a
minor role in the overall functioning, the networks do not lead to feesible
" models. 7 - o .
From the above discussion it may appear that the universal correspond—

ence demonstrated'by ﬁcCulloch and Pitts between logical expressions and

lthis gquite ineffective'type.of neural modeling is a mere coincidence. : Here

so
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the key relevance of the McCulloch-Pitts correspondence to the present work
emerges, It is, in an another context, the same dualism of functional and
structural aspects found sc inherent in automata theory. The fact that the
structural aspect 1is thought of as a network of neurons is simply an instance
among many others possible. The McCulloch~Pitts correspondence is a mathe-
matical issue. But mathematics is an aspect of psychological mental struc-
tures. And psychological structures are one aspect of neurological struc-
tures. Thus we can see a deeper universality in the McCulloch-Pitrs corres—
pondence, through a series of transformations of which we know very little.
Discussions on the relations between biological structures/regulations and
logicomathematical cognition may be found in Piaget (1971).

These considerations should make well apparent that the McCulloch-Pitts
correspondence is not only relevant to neuroclogy, but also, perhaps even more
importantly, to computers. Von Neumann (1948), in talking on a general theory
of automata, said on the subject:

The McCulloch-Pitts result ... proves that anything that can be exhaus-
tively and unambiguously described, anything that can be completely
and unambiguously put into words, is ipso facto realizable by a
suitable finite neural network. Since the converse statement is
obvious, we can therefore say that there is no difference between
the possibility of describing a real or imagined mode of behavior
completely and unambiguously in words, and the possibility of
realizing it by a finite formal neural network. The two concepts
are co-extensive. A difficulty of principle embodying any mode of
behavior in such a network can exist only if we are also unable to
describe that behavior completely.

In the light of the work described in this report, I find surprising
that these triggering words did not have apparently any resonance in the com-
puter field. But still more impressive observations come after (loc. cit,):

Interpretations of This Result. There is no doubt that any
special phase of any conceivable form of behavior can be described
"completely and unambiguously" in words. This description may be
lengthy, but it is always possible. To deny it would amount to
adhering to a form of logical mysticism which is surely far from
most of us. It is, however, an important limitation, that this
applies only to every element separately, and it is far from clear
how it will apply to the entire syndrome of behavior. To be more
specific, there is no difficulty in describing how an organism
might be able to identify any two rectilinear triangles, which
appear on the retina, as belonging to the same category "triangle,"
There is also no difficulty in adding to this, that numerous other
objects, besides regularly drawn rectilinear triangles, will also
be classified and identified as triangles— triangles whose sides
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.are. curved triangles whose sides are. not fully drawu, triangles e
that are 1nd1cated merely by a more or less homogeneous shading

n,of their interior, ‘etc.” The more completely we attempt to

.. describe everything that may concelvably fall under. this headlng,-,"

the longer the description becomes. We may have ‘a vague and un- -

_ comfortable feeling that a complete catalogue -along such lines. '
“would not only. be: exceedingly long, ‘but also unavoidably indefin-
ite at its boundaries.f Nevertheless, this may be a possible

“~operation. = ’ . :

) All of this, however, constitutes only a small: fragment of T

. the more general concept of identification of analogous geometrl-_‘.,f

" ‘cal entities. This, in turn, is only a microscopic piece of the

-general concept of analogy. - :Nobody would attempt to describe and . - .

_:define within any practical amount of space the general. concept S
- of- analogy which dominates. our interpretation of vision:. There is

. no basis. for saying whether such an enterprise would require ‘.. s

*  thousands or millions or altogether impractical numbers of volumes.

' Now'it is perfectly possible that the simplest and only practical .

. way actually to say. what .constitutes a visual- analogy consists in
giving a description of the connections of the visual brain, We o
“are dealing ‘here with parts of logics with Whlch we: have practical~’“-
1y no past experience. The order of complexity is out of all pro-

- portion to anything we have ever known. We have no right to assume

that the logical notatlons and procedures used’ in ‘the past are
7su1ted ‘to this part of the subject. It is not. at all-certain. that S
“in this domain a real object mlgnt not constitute the simplest _

. description of 1tself “that is, any attempt to describe it by the -

~ -usual literary or formal—logical method ‘may lead to something less

‘ manageable and more. involved. In fact, some results in modern
‘logic would tend to" indicate that phenomena like this have to be

expected. when. we come to really ‘complicated. ent1t1es.: It .is,.
therefore, not at. all. unlikely that it is futile to look for a
‘fprecise log1ca1 concept, that is, for a precise verbal descrip— -
tion, of "visual analogy.'" It is possible that the connection
pattern of the visual brain itself is the simplest loglcal exe ‘
pression or. deflnltlon of th1s princ1ple.- -

ZVVon Neumann repeated 1n several instances the expectatlon that, for
complex automata, the descript1on of an automaton is simpler than a litterary

description of 1ts behav1or.. Some elaborations on thlS conjecture, and com— :

ments of Burks and Godel are in voo Neumann (1966), pp. 46 - 56.

- Here, aosinple ohservatlon is made. Networks-are very.effectively-used
in certain situations such as:. the modeling of a neural behavior that can.
be’ reducad to the actlons of a few neurons, the descrlption of the behavior

of a digital c1rcuit composed ofa few elements- understandlng the interactlon

of a plurality of units at a hlghulevel description.. In these cases we see
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networks to constitute neot only a general facility for describing an actual
structure, but to constitute also a "language" for describing that behavior,
As a matter of fact, often the behavior is expressed in a simpler way by the
network than by a corresponding verbal description. Networks continue to be
a precise means for describing actual structures also when these structures
are very complex; the electric schematic of an entire computer, the tele-
phone network of a city, and a McCulloch-Pitts network for modeling a func~
tion of the CNS are examples. But in these cases the networks are not any
longer also a suitable "language" for describing a behavior. We can observe
very plainly that the ability of a network to be or not a suitable language
is determined by the elementé of the network to correspond or ncet to the ob-
jects used in our "image" of the system under consideration, when we think
of, and understand it., Obvicusly this fact is related te the processing
system of imagery studied by psychologists (see section 2.1.4).

If we consider networks whose elements are not defined in advance, but
are made corresponding each time to the objects of our thinking, these net-
works can constitute a general language for describing behavior. Moreover -
a unique and useful feature - they describe alsoc a structure. This approach
implies that we might need a subsequent consideration for defining those
elements in terms of other elements belonging to a lower hierarchical level.

These networks are not the block diagrams so often used in the most
disparate fields, although in certain cases they may appear similar to them;
they are not graphical representations of systems already wmodeled in some
other form; they are "machines" that realize the system. Networks as ab-
stract machines are symbolic representations that have the same exactitude
and permanency that are peculiar of the formal verbal representations. They
are suitable to a variety of syntactic features that are not applicable to
the block diagrams originated as graphical representations of already modeled
systems.

In summary, what we extract from the work of McCulloch and Pitts is the
notion of networks that are simpultaneously a description of a behavior and a
design of a structure. We comsider these networks as a language that des-
cribes simultaneously a function and an implementation of it.

Another interesting fact is the following., In applying this appreach

for modeling processes in the form of "abstract machines", we find (see
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chapter 6) that the descriptlon of these machlnes, espeC1a11y for. complex
processes, is typically simpler than the descriptlon of the processes the
-,machines_implicitly represent. It is-a suggestlve correspondence with von
Neumann 8 expectation, above mentioned, on the complexity of automata and

‘ﬂ their ‘activity. .

We conclude ‘this section ‘on the McCulloch~Pitts correspondence with. the L

1ast wards recorded on the work guided by McCulloch 1n this direction, p. 339
of an M.I T (1968) Quarterly Progress Report'“ ' i
_ Just as a universal Turing Machlne can- be made specific for
the computation of a particular number by having a portion of 1ts
tape ‘serve as a program, 'So can a ' universal net" of N neurons ‘be
made specific to embody any net of" N neurons (with or W1thout 1oops),
jby a proper encoding of its 1nputs.....‘, .
" Neither the: 1ogic of relations, nor. “the theory of neural nets

- is fully developed. 'We expect both to bear fruit in due season,
Jand have only reported the1r present fIOWering.;_ — :

"At the time in whlch the research reported in the above quotation abruptly
stopped not far from that place, but unfortunately without commnnication,

in a different context, the work reported in the present report was starting.

- 2 .6 OUTLINE OF THE APPROACH TAKEN

2 6 l §yn4p31s,_part 1

We started in section l 1 W1th the reallzation that limitations in the.
use of computers do not come. from technologlcal dlfficultles but from the
'cumbersomeness of communlcating w1th computers, and depicted the situation-'
7graphica11y 1n figures 1 and 2. In section 1.4, the need for a global ap— -
proach wag expressed which calls for an examination of the psychology -of the
user “and for a search for possible process1ng 1mplementations., After a tour
of the findings ‘of psychologlsts, automata ‘theorists, and neurologlsts, we
coime back to the consideration‘ofAa“global approach. ltspdevelopment is out-
dined in the following.. ' o o

In ‘the- first place. we observe that the approach used today, as depicted
in figure 2, seems affected by a remarkable sequence of successive trans-
formations. A human being develops ‘a process, to be later. glven a computer, .

in terms of his méntal structures; these structures have a variety of forms,
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and are open to continuous re-arrangement. Fundamental in the development
of a process is the geometrical intuition. Also in his most abstract activ-
ities, a human being is bound to use the structures that have been formed at
the sensorimotor stage; all the gestures and sketches we are familiar with,
and the imperceptible muscular movements found by psychoneurologists prove
this abundantly. The most general characterization of thinking, in the con-
text of using computers, seems to be a mechanization of abstract objects.
Giving the term a very broad sense, we can view these mechanizations as ab-
stract machines.

Then; the abstract machine in the user's mind is transformed into an
equivalent verbal structure —— the process expressed in a programing lan-
guage. Although in some cases the programing language allows an almost iso-
morphic transformation of what the user has originally in his wind, in most
cases a complete remodeling of the process is required on the part of the
uger before the transformation can be accomplished. This is a user effort.
The fact that this effort can be decreased by a long training is not a very
desirable sclution. Since a professional is necessary at present, this
training dis precisely one of the inconveniences, and it is questioned here.
Possible effects of this training in human behavior will be commented on in
section 5.1.2.

Subsequently, this verbal-structured representation of the process is
transformed further, through other intermediate languages, until finally it
matches the characteristics of a given, real machine —- the computer hard-
ware. We have already noted the further effort encountered by the user for
interpreting the work of this machine during the debugging phase.

Then, we cbserve that, in the outlined interpretation of today's com-
puters, we start from a machine (abstract, in the user's mind) and we end
with another machine (physical). Now, the question comes spontaneously
whether a more direct connection between the twe machines could be possible,
without going through all the described transformations.

The path used by today's computers does not seem tc have a universal
necessity, as it can be inferred from the different approaches seen in the
different contexts examined in the previous sections. It is simply a hap-
pening. Men are accustomed to give verbal orders to subalterns; first digi-
tal computers were elementary and made by simple on-off devices for which

simple verbal instructions were very appropriate. On the other hand, we can
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see, for 1nstance, that analog computers were programed in a different way.-
e For the pos31bility of 2 more direct connection between user and compu—
_ter, we- see the necessity ‘for a first change._ The real machine mentioned in
‘,the above description has a highly fixed structure (or, 1n other’ words, little'-ﬁ
1connect1vity), it is precisely the verbal structure which provides the’ match—-f'
. ing between the variety of "the user' s abstract machines and’ the rigidity of _
the real machine. If we- intend to eliminate, or reduce, this matching pro--‘
cess, we need the real machine to be capable of assuming the variety of
rrstructures of the mental machines. We have - already seen cellular spaces
(section 2 4) capable of becoming any conceivable automaton, we saw the
r human cortex (section 2 5 2) thought of as an organ capable of becomlng a .
'variety of other organs. Here we need” a substratum capable of becoming the
1various abstract machines of conscious thought in. the context of the: process—
es ve. give a computer. ‘ . ' ' ' .

_ In fact we need a substratum with dual aspects or, in other words, two.fl
isomorphic substrata in two different domains. one in a symbolic domain, to
play the role of a. language in which the user can externally express his men-—
tal machines' and another in a phySical domain Which when molded by a pro—k
duction of the first substratum, implements an actual operating machine
corresponding to the original user’s mental machine. S a

In regard to the nature of this dual substratum, it can not be prec1sely

"as the cellular -spaces discussed in section 2.4, because ‘they do. not match
' the user's natural way of - thinking of processes,. and they lead to inefficient
'implementation.-;A,51milar-situation_can_beaexpected in,regard‘to the human
'cortex»(a neuroloéicalistructure,-as opposed to the,psfchologicai'performance),
—althbugh we know: too. 1itt1e'about its. actual working. However,- in the general
notions of . automata we see the possibility of . defining such:a substratum.“ﬁ
Automata seem to: extract what is essential in the processes and’ they have a
double- aspect, one functional (which can be used for the. language role), ‘and
one’. structural (which can be. used as a design for actual: 1mplementation)
, The. 1evels at which the automata are conceived will be several in a hier-
archiacal relation, as our thought is; in section 2. 5 4 the subject was pre—.
' liminarily discussed ‘ ' o

Along these 1ines we will arrive at an actual definition ‘and 1mplementa-
tion of the desired dual substratum In the next section, the structure/ '

function duality will be discussed in some detail, and in section 2 6.3 the
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Fig. 7 ~ A programable decision device
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'synoptic.outline will continue‘from"otherfvieopoints, .

',2 6 2 Function and structure

| When a process is modeled in- the form of a sequential machine, we' ob—’
ltain a rigotous: definition of the process, but ‘also we f1nd in- our hand an’
“abstract structure that performs that process.- When ‘a-neutral- behavior 1is-
‘modeled in the form’ of a McCulloch—Pitts network an explanation of that be-- '
'ihavior is found but we find in’ our hands also a hypothatical mach1ne that -

‘produces that behavzor. When a certain performance is: obtained by ‘means of
f:a cellular automaton, we have in- front of us both a’ functioning and a struc-
“ture that produces ST : L S _

From all: these examples; we see’ that ‘one way for our thinking to define :

‘a process is that of dev151ng an abstract machine that mechanizes 1t T 1t 1s
“evidently a special—purpose machine, in fact, ‘even more, 4t i5°a’ completely :fV
"tailored machine' We prefer to say that it is the process itself . It is also:

the most effective machine at our disposal for that process"if we: could think -
‘more effectrvely, we would accordingly sketch that machine.' Pt is: clear that
" our thlnking has indissolubly embedded a functional and a. structural aspect"
‘that” the different forms in which we ‘can model our coguitions can differently
7enhance one or the other aspects, and” also, that for complex processes we’
‘tend to' enhance the structuralxaspect in. order to ‘use that_powerful capabili-
ty called'geometrical‘intuition.::In'accordance_with thesé ‘considerations ‘we
‘will form our substratum..’ R : -

_ -The - interesting point is that all such abstract machines (if we avoid
5distractions ‘and illu51ons) are: physically realizable, given approprlate means.'
V‘This ‘is 51mply the consequence of our thirking to be developed with years of .
‘adaptation to a world that we ecall phy51ca1 and say follows' certain laws.

‘The cleverness’ and éefficiency of these machines depends. on’ the familiarity of

‘the’ user with’ the process in question, on his skill, and’ on the’ teaching he

can have Erom outside. ‘We are looking-for a magic suhstratum5that”can make
“these imaginary machines real; let us start with two preparatory examples.

Let us suppose that we have the task of reducing the' coordinate’ scales
‘otia collection of drawings;-.ln this case somebody has taught us' the

mechanism of the pantograph We take four bars (a standard element in a

mechanical context), assemble them as in Fig. 6, and proceed in’ the well’

known manier. Note that we can produce the process even without knowing
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2.6.2

rules of geometry and without the need to express any word. If we had a uni-
versal machine in which we could command all movements, a considerable effort
would have to be spent for finding the necessary geometric rules, for apply-
ing them to the different instances in the drawings, and for communicating
all that to the universal machine, The example, because of its mechanical
nature, might not appear relevant to the preseant context. I think, instead,
that it is very helpful for peointing out certain general points. In particu-
lar, (1) it is a simple and revealiﬁg example of the effectiveness of a
special-purpose structure in producing a complex process (this strategy seems
_'completely neglected in today's computers); (2) it is a suggestive example of
how data can be properly "channeled"; the four bars constitute not only the
operational structure, but also the addressing device (this is a psychologi-
cal preparation toward the liberation from the "random access" trap).

As a second example, let us suppose that we have to handle a variety of
complex decisions. The approach used in today's computers is to model them
in terms of elementary tests. But a global approach can be very well taken
by modeling them as a single 1ogicél function, and implementing it with a
corresponding device. Fig. 7 shows a symbolic frame for thinking of decisioms,
compoged of a decoder and a comparator {standard elements in a computer con-
text). There are three types A, B, and C of events that may or may not occur
(YES or NOT,respectively). A decision has to be taken depending on particu-
lar compositions of those occurrences (Y¥) or not occurrences (N). A word
composed of ¥ and N, in accordance with a certain morphology, is presented to
the comparator, and the decision follows in accordance. Note that the mor-
phology of this word 1s suitable of meaning; for instance, the first N of the
word means that the decision should not be made when there is no occurrence
of any A or B or C; the last Y of the word means that decision is made when
all A, B, and C occur; a Y in all even positions of the word means that A
should always occur; an N in the first four positions means that C never
should occur, etc.

The structures of these examples can be thought of as equivalent to par-
ameterized programs; each is capable of a class of different processes. The
pantograph is capable of different reductions and isomorphic deformations of
drawings, by inserting the shafts in different holes of the bars. The de-
cision device performs different dis¢riminations, by changing the word in-

serted inteo it.
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In the two examples above,:the procedure was elegant because we started o
,from a. mechanism already 1nvented . But we cannot expect that this will al—
:‘ways be the case; nor are we - interested in an approach in which the user has
'.:to make each time a new 1nvention.j Fortunately, it is not so. The only _
assumption taken is that the user has the process in question clear in his
mind (this 1s not really a limitation, it is a ‘common. experience that it ds
preferable not to start action if one is ‘not clear what he wants) This,
Aobv1ously, does not exclude the fact that for complex processes clariflcation'V

develops gradually through trial and error. - We pr0ceed as follows. I

- If a user understands a process, inevitably he has a mental image of 1t'~
thus he will ‘be able. to sketch this visualization. ‘This’ sketch ‘Tegardless.
i‘if graphical mental or. verbal is an abstract -machinej at this point, ‘it is
" the process in Aits entirety. This abstract machine will be composed of parts;

to them the user applies again hlS visualization and geometric intuition Do
| powers,. with ‘new abstract. machines resulting.: This visualization 1f repeated‘
ﬂrecursrvely,.until‘thecparts-of.the;machines are elementaryrin‘the,given con-
text, or have knoﬁn'implementatiOn;f‘Insofar'aslwe'remain'in the~domain'of:“
- abstract machines, always it w111 be possible to express ‘these : abstract ma—.u-"
-chines in some form, ‘for instance with sketches and words.: ' ‘

' The: McCulloch—Pitts correspondence shows - that"when these abstract machines '
.have a certain formality, they can be. implemented by realizable: dev1ces. " Von 3
Neumann even argues ‘that, for complex processes, such machines can ‘be simpler .
.. than -a. description of what they perform - The' key for - ‘the practicality of
- this approach is to stop the succession of hierarchical visualizations at. the
point where the user stops to be interested for his- present purposes,-in_
other . words, ‘the dual substratum we are ‘seeking should be at- the level of the-
“user 5 inceregt,.” ;,“f,";._‘ o o e .;"a‘f‘;‘f;.;;: IR
.- 'In sections 2.3 and:2'4'we*saw7severalisuhstrata'for?implementing‘autos
mata; their common characteristic is to be at a very- elementary level “The
'motivation for this is:in- their objectives, analysis, classification, search
| for universalrhases. For these tasks, mathematical.simplicity and homogeneity
 are essential; efficiency is irrelevant.: Here, thefobjectiveﬁis”to7represent
hmental;images; this was the reason for'the-preﬁious:review:of psychological
theories of -thought. B - | | _ _'d

' ,Conventional-general—purpose'computersfare also substrata for processes;

but they‘are unsuitable for being molded by our mental images. The indirect
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way referred to in section 1.2 leads to the inconveniences discussed in section
1.1. The rigidity of present computers has been deplored repeatedly, especially
in the past, before the present dominance of software. For instance, Bauer
(1960) says "almost all the needs can be summed up in one short comment: there
is a need for computers which can adapt to problems. Up to this time com

|l
puter customers have found it necessary to adapt their problems to the computers

Estrin (1960) went further than a simple complaint; he proposed a symbiosis
of a fixed conventional computer and a variable structure consisting of an
inventory of substructures selected in accordance with the frequency of their
use. But it is neither simple nor efficient to have in advance an inventory
of all the structures that may be needed for all problems; a user might wish
a new piece that never was considered before. We can see also that the ap-
proach of analog computers is not suitable for our objective; in analog com-
puters, the processes have a fortiori to be modeled in terms of the available
devices (e.g. integrators, scalers, etc.); here, we need devices as suggested
by mental images.

In this study, in regard to the level of the substratum, we take the same
position as that of psychologists in fheir interpretation of human thought:
new structures are formed by grouping and integration of previously develcped
Structures, starting from a genetic level of the substratum. This substratum
should permit constructs equivalent to verbal stfuctures, processing of words
in accordance to a syntax; and coustructs equivalent to images, complex ob-
jects that are inclusive of data and functions, treated as a whole, of which
parallel and special-purpose structures should be among the possible applica-
tions, Fundamental in this substratum should be the spatiotemporal frame, in

order to take full advantage of our geometric intuirion.

2.6.3 Synopsis, part 2

1f a symbolic substratum is available in which the objects of our thought
can be molded, and with which objects our mental images of the processes can
be described as abstract machines; and if a physical substratmu, isomorphic to
the first, is also available that can 1mp1ement those abstract machines, we
can look again at Fig. 1 with a new interpretation.

Point A represents the mental abstract machines in the form of which the
user can think of the pfocesses. Point B is the representation of those ma-

chines in the symbolic substratum. And point C is the actual information that

-70~



- 2.6.3
'should be given the phy51cal substratum in order for it to be molded in the
fonm of those abstract machines._ The three points are distinct because they
belong to different domains, the mind, a representation, a- hardware, they are
,expressed in. different media, but they are structured in - the same way._ Thus
:we can. expect that ‘the transformation of one point 1nto the other. will not
_-constitute a great effort This approach corresponds to the intultive 1dea -
t(geometrical 1ntuition ) expressed at the end. of section 1 1 to shrink Fig l -
into a single point._w'. o * , l , e
j; In practical terms, rather than making first an effort to frame the pro—.
'fh*cesses 1nto stereotyped sentences, and then require the computer to’ make an—7
'other effort to re—trensform those sentences into a machine behav1or, we B
focalize our attention to the natural way of seelng a process as an abstract
machine, and then we esk the computer to copy it, From all the previous dls— -
icussions we can be certain that the language of abstract machines is broader,
and more widely suitable to different applications, than 1s a 31ngle phrase-
'structure language. A proper ch01ce of control devices and machinery has .
' made 1t pos31b1e for the majority of individuals to run tens of times their
walking speed and to extricate themselves in remarkable complexities such as
the automobile traffic in Los Angeles and Rome, by using sensorimotor struc—
tures developed since early stages._ It seems to me that it should be also
possible to choose proper control devices and machinery to make it pOSSlble o
:for the majority of 1ndividuals to: obtain by themselves, w1th the help of
‘ computers, symbolic processes orders of magnitude more complex than those

“mentally affordable, by u51ng imagery structures developed during life.
B In accordance with all the discussions in sections 2.1, and 2 2, “the act-

lual materialization of point B will take advantage of v1sua1 forms of repree
'sentation. We cen h0pe that the clarity peculiar to state’ diagrams and the
- properties analyzed in graph theory can be ‘joined in the development of an
effective graphical language. These graphical structures will. be embedded
w1th verbal expressions for their unique power of characterization and their .
'complementary features. _ o ' e e o
Having set forth the lines of our study, ‘we close the preparatory part

(the first two chapters) with an exercise of a graphical representation of
this report. From 1ntrospect10n and from psychologist s analyses we know of

the existence of several facets in thinking. We know also that processes can

o
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2.6.3

be implemented in different ways, e.g. Turing machines, analog, and digital
computers. This situation is visualized in the form of blocks in Fig. 8.
There, a dotted line indicates the course.of the discussion. We started by
recognizing certailn inconveniences in communicating with present computers
(chapter 1); then we went wondering what the user has in mind (chapter 2).
In chapter 3, a substratum for abstract machines is formulated, in chapter
4 an isomorphic physical substratum is outlined, the programing language is

discussed in chapter 5, and finally, in chapter 6, results are presented.
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Fig. 8 - Graphical visualization of different approaches to computers
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Chapter 3
The F_o’fmula’tioh of a Symbolic.Substraium

In the prev1ous chapter we have developed the background for a symbollc
sybstratum,; in a spat10tempora1 frame, in which abstract machines can be de—
veloped, corresponding to the user’'s ‘mental images of the processes. A sub-
stratum that-cen_also permit an iscmorphic physical substratum, such
that the abstract machines delineated by the user in the symbolic '-substratumr
constitute also the design of an actual implementation of the machines iu.the
-physical substratum. | o |

Below, some prelim1nary characteristlcs are discussed; the formulation
of the substratum is carried out in sectiuns 3.2 and 3.3; and in the follow-
ing section the substratum is compared with the other systems that are used

for describing processes,
3.1 PRELIMINARIES

Sequentiality - Mental processes appear basically sequential. We analyze

information sequentially; we aecomplish tasks sequentially, often in a sort
of time sharing, which 1tself is'a form of sequentlality. Sequential physi-
cal implementations, as 1s well known, can accomplish large tasks with small
means. There are enough justifications for starting with a sequential strucf-
turing of the abstract machines. ' |
" We note also that thinking acquires a special power by means of its

capabllity of keeping extra items -at the conseious 1eve1, in a kind of back-
ngouud, during the sequential performance of mental processes. We will give

our abstract machines an equivalent capability.
Time - Sequentiality implies a time frame. Certain precautions are necessary

in order to avoid ambiguity and instability, in regard to both logical con-

‘sistency and physical delays in impleméntatiou. In automata theory two

- =73-



3.1

solutions are usually taken: the synchronous approach, and the asynchronous
one with unit-delay elements properly introduced. Here we take the following
approach that shares the interesting features of both preceding ones.

Time is quantized in intervals labeled . . .i-1, i, i +1 .. . . (Fig.9).
The length of these intervals, in abstract or physical sense, is irrelevant.
At the conjunction of two adjacent time intervals there is a change region.
The characteristics and values relevant to our machines are defined for each
interval i, and we consider them as remaining constant within each interval.
Changes can cccur in the change regions, but we organize things in such a way
that we do not need to be involved in how they occur in these regions.

This approach will be used both at the macroscopic level of the process
modeling, and at the microscopic level of the actual execution of the specific

data transformations.

change regions

N

NN

.2 o1 s //// .
> - : A 1, A¢: i+1 o 1+2 o, time

_

Fig. ¢ — Quantization of time,

NN
NONNNNN

States - In observing our sequential way of thinking, we can say that in

fact we switch from one image to another, from one consideration to a subse-
quent one, from one viewpoint to another. There are, of course, interesting
variations from individual to individual: some data are given in sectioen 5.1.3.
It is a common fact that under an external stimulus, such as receiving an
unexpected word or hearing a telephone ring, we are able to change suddenly
the entire subject of our thinking. There is no need of further examples for
considering the notion of state of mind, or simply the "state", to be an ele-

ment appropriate for a psychological substratum. The notion of state is
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probably the most important building element of automata theory,‘ In several
different contexts, the ﬁotion of state is also applied to physical imple-
mentation of discrete systems, such as computers. As a conclusion we assume
the notion of state as a building block of our dual substratum.

The notion of state can be applied at many different levels and in ref-
erence to many different objects of the discoﬁrse, with a consequeﬁt very .
differentlusefulness, that a clafification. of the subject is appropriate
at this point. As a specific example, let us‘consider three possible appli~-
cations of the notion of state for a given éystem — a digital computer..

In the first application, we consider allrthe independent,'steady—
state logical levels that are present in the entire structure of the com-
puter. As is well known, we end up with an astronomical number of possible
states. States defined at this level might be of interest for analyzing the
local functioning of a particular circuit of the computer, but they are use-
less for understaﬁding the'fﬁnctioﬁing of the computer and for analyzing the
processes executed by that computer. ' |

In the second application, we consider fhe computer as composed of parts
treated as units; each of these units can be in a finite number of functional
states, and we conéider as the state of the computer the cartesian product of
the states of its parts; In this case, the'numbér of states might be manage- .
able, and the consideration of these states might also be of interest for
analyzing the interactions among the parts of the computers. However, these

-states.are still useless in the analysis of any problem under execution, be-
 cause they refer to machine conditions aund not to problem characteristics.
In the .third application, we consider the entire computer as a unit,
~and assign to it three states: the quiescent state before a problem is re-
¢eived, the execution state, énd the quiescent state after execution with the
output available. Here the number of states is too small to give any insight
into either the functioning of the computer or the characteristics of the
problems executed. The only interest for such a state definition would be
for controlling an outside device that gives the probleﬁs to the computer,
~and that acquires the output results, , ‘

From these examples, we see that the number of states varies tremendously
according to the level at which the states are defined; but we see also that

. it is not simply their number that affects their usefulness; in no one of the
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above applications,states are useful for our goal of modeling processes,

The notion of state becomes extremely useful for modeling,if the states cor-
respond to our visualizations of the processes; in particular, if they corres-
pond to our sequential consideration of the different phases of a process.

In this case, the number of states does not affect notably the practicality

of the model, provided that all the states together form a structure of the
process as it is understood by the user, and that the majority of these

states have a role meaningful to the user.

Transition - If the notion of state is used, we will need also the notion
cf transition from one state to another. This means that in our machines
the prescription of how to transfer from the present state to another future
state has to be a fundamental machine element. These prescriptions are
called transition functions in automata theory. They exist in present
computers only in the rudimentary form of jumps.

Because our substratum should have both machine and psychological
orientations, the transition functions will be derived both from automata

theory and from observations of people thinking (see section 5.1.3).

Data transiormation - If a process is considered, it is because of the need

of transforming some information. Therefore, at least in some "state" of

our machines, some data transformation should occur. We will keep the term
"data transformation" in order to treat comprehensively the different activ-
ities that might occur, such as those related to analytical functions, logi-
cal functions, data reduction, coding, selecting, formating, etc., all viewed

in a global Gestalt approach.

Input-output -~ Sometimes we think in complete isolation (off line, in com—

puter terms), and sometimes we think in interaction with the environment (on
line, using the same analogy). It is a common occurrence of life that during
the process of our activities we receive information from outside, and we
have to give information to the outside. Since our abstract machines are
inteénded to be a natural outgrowth of the user's mental images, we will pro-
vide these machines with a general capability of acquiring data from, and
producing data to the outside at any moment of their process, without being

bothered by any constraint or delay.
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" All the above preliminéry ohotaoteriétios are chosen a priori for burr'
suostrutum as éppxoptiate for‘botﬁ_tﬁe psychological and the realizable-'
t machine aspécts.‘ It is diffioult'to'séy whether the considerations of this
section constituted the initial requirements for the formulation of our
-abstract machines, or the a. posterlorl justification after the. formulatlon,
or & cycllca; adJustment and improvement of the substratum Probably, some.

of all of the aboveuis_true.~
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3.2 - ELEMENTARY MACHINES ( FSM AUTOMATON )

3.2.1 - Symbolic formulation

The primitive elements considered are:

(i) a finite set of process variables x_, 8 generic subset of which is

indicated as Xq ;

(ii) a finite set of input data u_, a subset of which is indicated
as Uq :

(iii) a finite set of output devices, or control storages, z_ 3

{iv) a finite set of labeled process-states s , where a state is

defined by:

(v) a function Fj which produces new values for a subset Xa as a

function of the values in subsets Xb and Uc s

(vi) a function T, which produces a label s (the next state) as a

b
funetion of the values in subsets Xd and Ue , and
{(vii) a prescription R.j for routing some variables X to some of

the output devices, or control storages, z .,
r

An abstract machine is defined as a finite set of quadruplets

I, F,, T,, R )
[ RS R A | ] s
{(3.1)
s=1, 2, 3, ... k
where Ij is the prescription of an input subset Uj = UCLJ Ue’

Fj’ TJ, and Rj are as defined in (v), (vi), and (vii), respectively, and

s ranges through the k states of the machine.

The wvariables X, and their subsets Xa . Xb » and X, are implicitly defined

d
by the functions F& and Tj . Without loss of generality, we suppose in
the following that X, and ﬁr belong to a finite alphabet of integers from

0 to 20

Such a machine, as far as its internal behavior is of concern, can

be functionally represented by the two expressions
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3.2.1

x) =7 [ 2w, vw |
: : (3.2)
s(i+1)

Ts('i.) [ rx(1+1)', U(i)"-]

- where the symbols have the meaning indicated before, an& i is the time as
formulated in section 3.1 . For éach value‘i of timé; s(1) énd s{i+l) are
the present and next states, respeétivelﬁ."It is probably appropriate to
recall that, here, the states are “process-states" and not states of the
variables; a state refers to é qﬁadruplét (3.1); in successive times i, the
state (a quadruplet) may rémain the same, but the variables tyﬁically change.
Further discussion will be found in section 3.4.1(6).

Such a machine can be represented also in the form of a state diagram,
by means of proper cgnventiéns.. In chapter 5 a set of conventions are
glven, and in chapter 6 many examples are shown. A machine-sb'formulated‘
is referred to as a Finifé State Machine (FSM); capital initials are ﬁsed

to distinguish it from the otherwise formulated finite-state machines.

3.2.2 - Structural formulation

Let us call logical network, or simply network, any logical network
that, regardless of the devices used and the level of the functions con-
éidered, corresponds to a 1cgical activity in the sense discussed in section
.2‘5’4' ‘If Fj stands for a'logical_desgription of an activity j, and Nj

for a logical network performing that activity, we can thus consider the
mapping '

3

Fy— N, _ 3

4 Let us now consider a very large (finite) logical network composed of
operating and storage elements. TFor simplicity, and without loss of general-
ity, we assume binary quantities. Such a network can be regarded as a giant,
unmanageable, finite-state machine with a very large number of states and
input signals. The state diagram of such a machine has such a complexity
that it can be.considered undescriﬁahle; we call it a total state diagram.
Let us divide‘thefinput signals into two categories, which we call v inputs'

and p inputs. For each set of values at the p inputs, a particular. "compon~
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3.2.2

ent" of the total state diagram 1s selected, while all the rest disappears.
Such a compenent can be regarded as a specific computation on variables
connected to the v inputs.

If there are m of such p inputs, we can look at the ensemble of the p
inputs as a word W of m binary digits. All the possible patterns for these
digits form a set of 2™ words. Let us call L the subset of these words that
correspond to meaningful 1ogicai networks. We can thus consider, in the

- subset L, the mapping

Nj-—-p wj (3.4)

where Nj is a logical network performing an activity j, and Wj is a digital

word implementing that network. In the sequel, we will call a programable

3

specific networks Nj that perform activities F,. We consider the subset L

network (PN) a logical network as described, where words W, can implement

as the language of that programable network, and the mapping

Fj - W (3.5)

3

as the semantics of that language.

If the objects and the structures of the network are made correspond to
those that are used in the descriptions F, an encoding can be chosen for the
network such that the descriptions Fj can be mapped into the words Wj by
direct transliteration.

A programéblé'network PN, as previously defined, is embedded with a
set of internal variables x_ (Fig.10). By the term embedded it is meant
that the variables are expressed in some digital form and are stored in
some elements of the network where they can be read and written by some
inputs v and outputs of the network. The p inputs of PN read digital words
WF and WT in a storage P. Some of the v inputs and some of the outputs of
PN ére connected to input lines £ and output lines [ , respectively, through
switching devices that respond to digital words WI and WR s respectively,
in P.
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3.2.2

- We give such a structure a control. for selecting quedruplets-iﬁ P.
During each time interval i, words W and WF of the selected quadruplet..
are connected to the input switches and to the p 1nputs of PN respectively,

© at the first change period, the network is activated F. is performed, then
WT'1s substituted at the P 1nputs, a selection of a quadruplet is determined
for the future interval (i+l), and finally W “is connected to the output -

switches. In the next t1me interval, the newly selected quadruplet will

perform the same- way.
3 &

(programable o] ] (] L SR
R ESPRRRRE [T VAt i
. o e we Wy W)
[ N R B

Fig. 10 4{Tﬁe.F'S'H automaton

In the realﬁrof the'language‘L of PN, this structure:parallels the
eymbolic automaton defined in section 3.2.1, in the realm of the  language
there tacitly implied., The symbols I, F, T, and R there considered corre- _

W, and W, used here. In‘both%cases; when

_ Wps Voo ~ 'R _

specific and proper values are given to these symbols, specific machines

_are defined. With the first formulation, the machine is in a verbal-like .

structure; with the second formulation, it is in an imagerj—like structure.
In accordance to this cotrespondence, the automatonrncw formulated will

be called also a Finite State Machine (FSM).
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' 3.3 COMPOUNDED MACHINES ( CPL AUTOMATON )

The elementary machines just defined (the FSM automata) constitute a
sufficient, or appropriate, modeling frame only for simple processes, A

more powerful frame is necessary in cases such as:

(1) when several processes have to be dealt with simultaneously;

(2) when our mental limitation requires to attack a complex process in
smaller parts separately;

(3) when the size of the process exceeds the assumed size of the FSM

automaton.

In these cases, a compounded machine is developed, by grouping a plurality

of elementary machines,

3.3.1 Svymbolic formulation

Each component FSM is defined by a set of quadruplets (3.1), and
represented by expressions (3.2). We will give a name to each FSM in order
to make communication between them possible, Corresponding extension should
be given to the elements I, F, T, and R.

Gbvigusly, to make compounded machines treatable and consistent, a
new grammar has to be formulated, and possible limitations spelled out.

But we will not ge further in attempting to define the rules and the

constraints of such a grammar in a symbolic context.

3.3.2 Structural formulation

Let us connect an FSM automaton, as defined in section 3.2.2, with a
memory in the following way (Fig. 11). During intervals i, the content of EN
is removed by a control, packed in &he form of a page cf data, and stored into
the storage medium of the memory, through its input lines,

A page here is a virtual replica of an FSM automaton. It includes the
present set of X s the state label s(i+l), and the set of quadruplets de-
scribing the FSM; these quadruplets may be substituted, in the page, by the
name of the FSM, if they are stored elsewhere (as will usually be the case in
the isomecrphic physical substratum). Although the page is thought of as a
compressed package, it is a "structured" set of data, in the sense that the

detailed information of the allocation of each variable in PN is preserved

in some form,
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As soon as the FSM automaton has been emptled “the control transfers

'into it a new page. from the memory, through the memory output lines, and

".allocates: data into PN according to the ab0ve—mentioned informatlon 1nherent

-to the structurg_of_the‘page;‘ In this way, a large number of FSMs can per-
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3.3.2

form their processes, through the circulation of the pages between PN and

the memory, in a time—sharing fashion. All the change pericds of the several
FSMs are made contiguous in the PN, as diagramatically indicated in Fig. 12,
and are called the cycles of PN,

The storage medium of the memory is structured by the injection of
pages, and by the content of control storages 2. (iii in section 3.2.1).

The pages injected by the FSM automaton form a sequence of blocks, typically
of different lengths. This sequence is segmented and structured in accord-
ance with the content of certain control storages Z.. The path of the pages
between the input and output of the memory is a comnsequence of this struc-
turing. The content of the control storages, and thus the structure of the
memory, may change at any cycle as‘a consequende of routing R by part of some
FSM.

The continuous, automatic circulation of the pages gives not only the
possibility for many FSMs to use the same PN in time-sharing, but, not less
important, allows a continuous dynamic reshaping of the memory substratum.
Each page can independently change in size during processing in the suc-
cesgive circulaticoms. PN can generate new pages that become inserted into
the memory segments. Pages can eliminate themselves sgimply by not
circulating.

The page is a dara structure that automatically modifies itself during
processing as a consequence of the Is (introduction of new data), the Rs
(routing of data to outside or displacement of data), and the Fs (data
transformations). These pages, in their actual (not virtual) form, are
considered by the user in his dealing with the process, and are manipulated
by the programable network in the execution of the process. It is this
identity of data structure, as seen by the user and by the computer, that
contributes to make simple the man machine interaction.

The array of storages X, in PN has a replica, indicated as H in Fig.11,
also embedded with the programable network. Storage H can copy a page cur-
rently in PN, can transfer a stored page intc PN, and can take part in tha
operations performed in PN. The content of H is not removed during the cir-
culation of the pagés. In this way, the several FSMs in process can exchange

data and interact through H. Storage H has a role equivalent to the
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paychological background noted in sectlon 3 1l in regard to sequentiality in
thlnking. , ‘ 7 _

The input-output connections w1th the environmeng_allow each page to
acqu;re new input data u, and_;outing dete toroutside-output storages,uat_
each circulation. From the viewpoint of each FSM, the entire structure is
as if it .were dedicated solely to its own process; thus each FSM is treated
as indicated in section 3.2. '

An FSM (a set of quadruplets) can be implemented by several pages,
which simply carry the name of the FSM and. the present state; a page can go-
through several FSMs by changlng the FSM name. Variables x, may refer to
names of FSMs and pages. A speciflc implementation of the language for d?s-
ctiBing these struetures is given in chapter 5. The dynamic behavier of
these structures can be best represented, again, by means of state diagrams,
by using proper eonventions.

“ A compounded machine is developed by defining several interacting FSMs
and related sets of pages.. A_complex ﬁrocese'is modeled as an interplay of
'processing.structures (the FSMs) and data structures (the pages), developing
them as suggeated by the mental images_that the user has of fhe process in

question. o . . '

A variety of coordlnates are avallable along which to model a process:
a parallel a:ray-of data and.operatlonal structures in- PH, a parallel array
of pages ih the memory; a sequential pattern of a page durimg its circula-
tion; a sequential evolution of arrays of pages in the memory; and a
‘sequential interaction with systems in the environment.

It can be noted that the -compounded machines have been introduced in a
structural form; the corresponding symbolic form is not presented as it was
for the elementary machines,'.This is because it is only through geometrical
intuition that we can manage compiex behaviors. If we had formuleted a com—
pounded machine in a purelj_phrase—structure form,-much more effort would
have been needed, and at each step we would have had to take recourse to
local spatiotemporal images for understanding what is going on. For this
reason we prefer to start from an overall image in structural form and; when
appropriate, to teke recourse locally of verbal forms such as the words of
the quadruplets and names. This corresponds precisely to the alternation of

images and words that occurs in thinking (section 2.1.4).
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Because of the peculiar features of such a machine — the organization
of data in structured pages, their automatic ciruclation, and the loose
nature of both the PN and the memory — it has been referred te as the

Circulating Fage Loose (CFL)} autpmaton.

3.3.3 Discussion

What has been described constitutes a symbolic substratum that imple-
ments the characteristics outlined in section 2.6. There are three regions
(Fig.1l1l), the programable network PN, the programable memory, and the
environment; each has different orientation, and is suitable of different
structuring. PN is a region where the user can develep structures of data
and of operations; it can be considered as corresponding to the psychologi-
cal short-term memory and local images. Through this region, patterns of
symbols (the pages) circulate from a dynamically structured memory (the
page memory) that, in fact, implements a large number of virtual PN regioms.
In actuality, the multiplication of PN regions occurs sequentially, but
there is a complete interaction between PN and the memory, that both can be
considered as forming a larger, complex machine(s). This ensemble corres-
ponds to a kind of multiple visualization and to an intermediate memory em—
ployed by the user in his development of the processes. Each time a page
is in PN, it can exchange data with the enviromment, which includes the sys-
tems with which to interact, and with other regions of the memory.

The genetic level of the substratum can be the single digit, since both
PN and the page memory are programable. The working level of the substratum
is that of the primitives listed in section 3.2.1. Operational and data
structures are treated as a whole, by means of the words F and T, and the
names of pages and ¥SMs. In PN, operational and data structures aze devel-
oped conjointly, as has already been seen in many forms of automata, and
these structures correspond to the images that the user forms of the opera-
tions; situations such as that of Fig. 3¢ are implemented, rather than se-
quences of steps such as in Fig. 3a. In sum, it is a standard substratum
in which the user can develop the structures that he feels are appropriate
for the problem at hand. What we call here an abstract machine is, in
esgence, a spatioteﬁporal dynamic representation of a process, in terms of

objects constructed by the user in this substratum.
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Note that”the ianguage for describing'these machines is based on a
Syntax very famillar to all users: the rules of a pseudo;spatiotemporai
frame,’ against Which the programer can check the cons1stency of what he is
developing, In_fact,—this frame helps the conception of the programs and
guides their.conStrnction. .This is particularly apparent when compared to
the instruction or statement listing‘of'conventionai progrsms.‘ -

. Another help to the user comes from the hierarchical structure of these
abstract machines. _First,'the~overali structure, the strategp-for the model
of the process, is conceived in terms_of*FSMs and pages,._Then the state .

- diagrams of_the,FSMs are developed. Finally, the operational structures,
and the inflected words that make up these structures are constructed-in .-
detail " (see chapter 5). ' -

The basic point of thls approach is to.invent-a machine {in the broad-.
est: sense) approprlate for: each case, process, task. In other words, one
has not to imply . a set of given devices, on the basis of which appropriate
algorlthms or procedures should be. prepared but has' to prepare a speclfic '
device that will doAthe;de31red activ1ty as 1ts natural response, and, if-
it is the. case,"following{specific'methods requested by;the particular
iapplication. 7 ) ‘ ' '

The devices: to be invented are "abstract materializations" (the contra-
diction is- purposely ‘made to focalize the different aspects of the pomnt) of
whet:theruserphasnln mlnd-f_ a consistent, reallzable description of how he
,thinks'thelprocess can be_produced in an abstract world. uNow‘we can foresee
From a general viewpoint the difference that results in programing. Conven-
tional programing consists of transforming activities in: order to’ become
procedures executable by given devices.a Here programlng consists of syn- -
'thes1zlng devices for which the given activity, prec1se1y in the form pre~
ferred by the. user, is-an executable procedure. .

- Given the developmental character of these machines, it will: be possible
to nse-iﬁplicit‘description~of them, A prOgram‘meyﬁconsist-of=a'very concise

description of a generating machine; then, this machine will construct the
entire system of FSMs and pages necessary for the execution of the intended

‘process, Here we come close to self-organization; but actually to perform
self-organlzatlon it is necessary to define tasks, criteria of evaluation,-
and -interacting environments, all topics that are not included in the

‘present report.
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3.4 COMPARISON WITH OTHER FORMAIL SYSTEMS

3.4.1 - Compaxison with the commdnlz_formulated finite-state machines

The "FSM" is based on the same notions of state, input and output
symbols, and transition function as are the "finite-state machines" which
can be said took first organic form with Moore (1956), and which are now
well established in automata theory. In recognition of this fact, the
automaton defined in section 3.2 has been indicated with the same terms.
However, there are differences; to help avoiding possible confusion, we use
capital initials, Finite State Machine (FSM), for our version.

The differences between the FSM and the finite-state machines of the
literature are of two types: in application and in formulation. ¥Finite-
state machines are typically used for modeling the behavior of the simplest
elements of a system at a very micro level. The FSM is used to model an
entire process at a macroscopic level. In regard to the formulation, the

following differences can be pointed out.

1. The characterizing functions of the finite-state machines are
thought of as declsion tables, or Boolean functions. This is in connection
with the type of symbols used. In the FSM the characterizing functions ate
extended to all sort of discrete functions, and in a sense they are treated
similarly to the analytic functions. Also heré, while the practical. conse-
quences are fundamental, no conceptual difference is involved. In the FSM
moreover, because of the complexity of these functions, the characterizing
functions of the machine are broken into several separated expressions, oné
pair for each state. Further subdivision in separate expressions will

appear in the actual programing language.
2. In the finite-state machines, the input and output symbols are from

a small alphabet; most commonly they are the binary symbols 0 and 1. This
is because the finite-state machines are characterized in tabular form (or
its equivalent), and with a large alphabet a table becomes impractical. 1In
the FSM the symbols are sets of variables whose values are from a very large
alphabet. Because the FSM is characterized in terms of functions, the szize
of the alphabet does not produce inconvenience. But in fact, while the

different size of the alphabet produces large practical differences, it does

not constitute a conceptual difference,.
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.3. In the FSM there are the internal variables xr. It is the presence
of these variables that makes the FSM a practical model for all. 'sorts of
processes. However, the internal variables can be viewed either as further -
- input symbols or as states of the machine. In either of these two cases
Lthe FSM would assume the formulation of the usual finite-state machine. In
one case, we can say. that the total states of the .machine are partitioned
| in ' process states and internal variables. In the other case, we can ssy
that the output symbols that are needed in the future are stored in the
_machine, rather than being represented as new input symbols.; It is the -
_flexibility glven the user to choose each time which event is treated ;as a
State, and which as an internal variable, that contr1butes to make the FSM
:a suitable model for the different types of processes. The p0531b111ty of
' exchanges between number of statea and size of the alphabet in a finite—state

machine was flrst shown by Shannon (1956)

_ Conventlonal f1n1te—state mach1nes have ‘some memory capacity for hold— -
_1ng the state. . The FSM has the mMeMoOTy capacity extended to hold also inter-
nal variablesfx The 1nteresting point: is that the new finlte-state maehine
.(the FSM) becomes able to handle efficiently ‘the procegses without an’ out—'
side memory and all the consequent traffic of data. Traffic which produces
the unacceptable ihefficiency‘oflthe Turingumachines,'and;the accepted (but .

- not desirable) overhead of conventional .computers.

R 4‘f Conventionally, Moore and MEaly finite—state machines are dlStin—
guished in regard to the output production. ‘In the FSM because. an entire"
programable network is at our disposal, a variety of output functions can '
- be defined In section 5.2.5, -the language will be given for prescrlblng
three types of output productions. state related, transition_related, and

driven outputs.

5.-;Finally,‘the;most,significant difference is_inzour use of the: -
structural form. Based on the McCulloch-Pitts eorrespondence,.we'allow-our—
selues to considersgeneric structures that become specific structures in
responselto‘program words. This fact gives the possibility of viEW1ng
sort of universal'finite-state machine. The very 1nterest1ng point dis that,
. in spite of this uuiversality, each specific behavior can be 1mp1emented

with the des1red efflcency, and not through a complex simulation.
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6. The application of the notion of state made in our formulation
deserves further comments. 1In section 3.1, the variety of levels at which
the notion of state can be applied was discussed; but the application of
states can be diversified also because of the different objects to which
they have reference,

A well-known application of states is in the role of generalized
coordinates of a system: the state variables. Here we are not interested
in the detailed consideration of the values of such variables, a consider-
ation that belongs more to the analysis than to the synthesis of a process;
here, this role is performed by the process variables X Oﬁr states
correspond more to the phases of the process as visualized by the user.

In psychological terms they tend to correspond to the states of mind of
the user; in analyticai terms, obviously, they can always be viewed as
partitions of the set of values of generalized variables.

The usefulness of our definitlon of state becomes apparent in the
construction of a program. The modularity offered by these states helps
the assembling of complex processes by interconnecting and modifying dif-
ferent parts, These states provide an easy understanding of the grammar
of the FSM; a state is a temporary choice of the four fundamental ingred-
ients: new input prescription I, data transformation F, transition function
T, and routing R. Besides, these states can always be used for modeling

the different past histories, as in conventional finite-state machines,

3.4.2., Comments in respect to Turing machines

Turing showed the power of the symbiosis of a finite-state machine with
an unlimited scannable tape. This symbiosis is the essence of all Turing
machines, regardless of the various features that they might have. Ia the
CPL automaton (Fig.1l), the programable network constitutes a finite-state
machine, the finite page memory plus additional outside storages that might
be uti;ized through lines § and [ are equivalent to an unlimited tape; the
information read by the finite-state part is a page; the successive pages

scanned are determined by the finite-state machine by means of the routing R.

In this generalized sense the CPL automaton is a Turing machine.
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Let us now comment on_ some peculiar features of the CPL automaton in;}

respect to conventlonal Tur1ng machines..

1. The portlon of data that is read at- each cycle (or move) of the CPL
automaton is a page. ‘A pagpe can be considered as. a tape. symbol belonging
to. an- extremely large alphabet, oT as an elementary volume of a multi-~ |
'dimen31ona1 tape (see’ Arbib 1969). It is Well known that in general the
size of the alphabet and the dimensionallty of the tape allow an 1ncrease _,'
jofyefficiency in a\Turingrmachine,: In- the CPL- automaton,. moreover, 1t is
possible to relate in an. intuitive way. the structure of the-pages to the;p
data structures of the processes to be executed ‘and the overall result

is that the work of the machine appears 31mple to a user who is famlliar

with those processes. :'

2.7 It is well known that a large number of states permits a more efficient
work in a Turing machine; but -at the same time, 1t makes more cumbersome
'tthe descriptlon of the mechanlzation of the machine. In the CPL automaton
_ the number of states can be as large as required and these states are .
: introduced in correspondence to’ the mental states through which the userr
' goes in thinking of the processes. The result again, is that the work of
'the machine can be made efficient and simple to a user familiar w1th those

processes..

3. A speclfic Turing machine is thought of as a definite structure, with
.definite quintuplets (symbol read, present state, symbol written, next state 'i
move) that describe the performance of the flnite—state part. A universal ‘
Turing machine has, in additlon, a program written in a section of the tape
' such as to instruct the universal - Turing machine to simulate a specific
Turing machine. It is precisely this simulatlon that makes the universal
Turing machines unusable even at the theoretical level (the 1mportance of
 the unlversal Turing machines is in their existence, not in their use, for
1nstance as. theoretical models) '

The CPL automaton, because it has the capabillty to store a program,

is equivalent to a universal Turing machine. But its unusual characteristic
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is that it does not simulate a specific machine, rather it becomes a
specific machine, by means of the programable network PN, and the structur-
ing of the page memory. This is meant in the sense that the user, in each
moment, sees only one definite, specific structure, the one that has been
described by the quadruplet of the past and present states; at different
moments, the structure may be different. One could say that the universal-
ity is obtained not by initially writing a program on the tape, but by
initially assigning different quadruplets to the finite-state part.

The consequence, obviously, is that in this case we can optimize the

efficiency for each different process.

4. The increase of difficulty in managing a Turing machine when the number
of symbols and states increases, as mentioned in (1) and (2) above, explains
why efficient Turing machines never have been considered. On the contrary,
it has been a continuous challenge to search for Turing machines with fewer
and fewer symbols and states (see Minsky 1967).

In the CPL automaton we can see a Turing machine where the efficlency
is the prime interest. This efficiency is not paid for with a complexity
in the "use" of the machine, because the machine is "constructed" as and
only insofar as is necessary for each specific process. Certainly the
substratum on which the machine is constructed (the PN and the memory) is
much more complex than the substratum of a conventional Turing machine (a fi-
nite control and a linear array of tape squares). But this is of no concern
for the user, because the substratum, be it simple or complex, is given.
Moreover, in the CPL automaton, several different machines can easily

coexist in a concurrent or independent work,

3.4.3 Considerations in repard to cellular spaces

Cellular spaces (briefly described in section 2.4) are indeed a fascin-
ating field; to mention some of their potentials, they allow universality in
both computation and construction; they seem to promise a mathematical under-
standing of certain aspects of biological structures; they seem to offer a
coherent guideline for the developing technology of large-scale integration.
However, to date, practical utilizations are quite behind the potentialities,

either for modeling neural systems, or for describing parallel computations,
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or for designing large integrated ciﬁcuité; It might be that some crucial
characteristics are still difficult to be handled in the cellular spaces so
far considered. - .

The substratum defined in this chapter in somé_respects bears similari-
ties with cellular spaces, and in other respects it uses different approaches.
For this reason, some considerations in regards to both are discussed in
this section. | ' 7

7 Biological as well as psychologiCal structures possess the capability
of self-development from a genetic substratum; the new structures then con-
stitute a new substratum for furthgr development. The engineering of inte-.
grated circuits has the capability of'adapting the'design_in'accordance
with an unlimited variety of practical considerations. Cellular spaces:are
mathematical structures that for necessity of &efinitioﬁ and treatment'need
a high degree of ﬁniformity and genetic éimplicity.‘ In cellular spaces,.
even with an amazingly simple mathematical substratum, universality in com-

- putation and coﬁstruction‘can be theoretically obtained. But these outcomes,
in general, have characteristics that render cellular spaces unsuitable for
practical utilization; If practical considerations are imposéd, the neces- '
‘sary mathematical hdmogeneity and simplicity are lost. . The consideration
of several hierarchical layers, each genetically based on a lower layer "and
exhibiting higher level characteristics night offer a sclution to the prob-
lem; but no treatment of such an approach has been yet developed. &

The substratum for our abstract machines is composed of two fegions
with different specialization. One region, the'prdgramable ﬁetwork or PN
is specialized for operational structures; the other region, the page mem-
ory or PM, is speciélized for data structures. This approach'gives'én ini-- -
Jtiéi advantage in'respect to cellular spaces without going as far as to B

duplicate the rigidity of configuration of conventional computers.

In attempting practical implementations of cellular spaces there is
always to be considered a compromise between the sophistication of the

space and the loss of efficiency because of poor utilization of such an in-

vestment. In our substratum the solution is taken of using a limited,

small region with a very high sophistication (the PN rich in connectivity

and functiomal capabilities), and multiplying this region, in a virtuai

fashion by means of pages that reside in a much simpler substratum (the FPM).
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The page memory here is not a "random" piling of data, but is an organized
tessellation of replicas of PNs, typically each one different from the others.
When these replicas (the pages) are in the memory, they are, so to speak, in
a dormant status; when they are In PN, they are in full active status. In
this case, the compromise to be considered is between the extension of PN

and the serialization of the execution. The utilization of the PN region can
be made very efficient because of both its sophistication and its Iimited
extension.

One of the difficulties in the theory of cellular spaces is that of com-
munication among remote regions. The Holland's path construction is an ex-
ample of the ingenious and complex provisions that have to be taken. TIn our
substratum the circulation of the pages, in conjunction with the auxiliary
storage H, provides a general means of exchanging data among different regions
of the substratum. In addition, the routing function can be used as a fast
mail systen for sending information elsewhere.

The most complex task required by cellular spaces is programing. The
desired activities have to be modeled in terms of the characteristics of the
available space, The works made in regard to the von Neumann cellular auto-
mata and the Holland machines are examples. In the CPL automaton, viewed as
a tessellation space, we can have easily different characteristics in differ-
ent regions and these characteristics and regions can vary in time. Unlike
the Yamada treatments, where these characteristics are dealt with as mathe-
matical properties, here the user visualizes the properties in terms of
characteristics of abstract machines. An abstract machine, when deviced by
the user for a particular task (for which he concerns) does not appear com-
plex, psychologically speaking. In a sense, we may perhaps say that the ap-
preoach of using a substratum that can be characterized in terms of abstract

machines is in between those of cellular spaces and special purpose machines.

3.4.4 Considerations in repgard to formal languages

Formal language theory defines a language as a set of strings of symbols
over a finite alphabet. Such a broad definition covers natural languages,
programing languages, and certain mathematical systems studied in automata

theory. The approach taken in- formal languages alsoc clarifies how a language
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makes.it possib1E-to express_infinite_information (the enumerable_infinite
set of strings) with finitermeans-(the finite'alphabet and grammar).

Our abstract machines, because they form an organized system of -ex-
pression, constitute a formal language in a broad sense. But they are-multi-
dimensional objects, as. Opposed to linear strings of symbols, and they are .
‘governed by a grammar that also Ainvolves "imagery" -features. As such they
cannot yet be framed in available theoretical treatments (see Book 1973);
this fact, however does not impair the validity of using such a language.
Mbreover, we are using a very. simple type -of abstract machine that is readi—.
ly expressible in the form of strings of symbols. In the absence of devices
_that could accept directly state diagrams sketched by the user, we are ob— .

_liged at the end 'to. express the abstract machines in the form of strings
of symbols.: ' . _

. In section. 2.1, 4 the two main symbolic systems delineated by psycholo-
‘1gists in the study of mental processes were reviewed._ the verbal structure
system and the 1magery system., In this context, we can say that convention—r
al formal languages are a way of expre551on that utilizes exclusively ‘the
phrase—structure symbolic system, and abstract machines are a way of ex-

. pression that utllizes abundantly the 1magery system. When a user is devel—
| oping a program in the form of an abstract machine as 111ustrated in chapters
5 and 6, he uses both the verbal and the 1magery systems as appropriate.l, 7
When that program is given ‘to a computer ‘that can accept only strings of‘symr
bols, -the abstract machine is. expressed in terms of a formal language of .
"phrase structure, ) _ ' , _
_ . The 1nteresting point s that certain processes might be more’ easily
.concelved and described in terms of abstract machines than . by means of a
phrase—structure language (compare with the von Neumann quotations on pages
60—61 in the prev1ous chapter)}. In such’ cases, 4t is advantageous for a
human user to work initially with abstract machines, for which he can take
full advantage of - imagery and geometrical intuition. 'These abstract machines -
should obviously constitute a formal system, that 1s-they should form a -
'"language" in the ‘broad sense. Then, the abstract machlnes are re-expressedl
“in the form of a string of symbols in a formal. language, in order to be '
‘acquired by a dlgital machine. . _ 7 7

The abstract machines formulated here can be expressed very ea31ly in a

formal phrase—structure language. The elements of these machines are always
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the same (I, ¥, T, R), regardless of the process they represent. The grammar
that manages these elements is formally simple, in spite of the tremendous
flexibility that it offers for modeling processes of different natures. All
the graphical means employed have a very direct representation in the form
of symbols iﬁ a string, governed by a simple syntax. As an example, program
4215 expressed as a state diagram in Fig. 48 of chapter 6 is shown here in
the form of strings of hypothetical phrase-structure language. Five FSMs

can be distinguished, all engaged concurrently on the same task. The items
constituting the FSMs are indicated sequentially in the order I, ¥, T, R,

and the symbol ";" is used for missing items, except at the end of the state
descripticn. Each state is delimited with square brackets; the states are
ordered following their label number, which thus does not need to be indi-
cated, The unit that in spoken languages is the sentence, here is the state.

The symbol # is used to delimit each FSM.

FA2IS[TF T (1,211, T, (0,5) 1I,F T, (3,4)R, 1 [1,F_ (0)1{I,F,(0)]

[ISF5T5(6,13)R2}[16F6T6(7,9)][I7F7T7(8,11)][IBFI(G)RSI

[;F9T9(10,13)][110F10T10(6.1l)}{:Fll}{:Flz;Rlzl[113F0T5(13,14)]

[114F0T14(2,13)]# #1110{IF(0)R]# (3.6)

#1112[;F0To(0,l)][IlFlTl(Z,l)][;FZTZ(O,B)][:f3T3(0,4)][14F4(6/0)]
[FT5(6/5,5)10;F R 1#
FLLL30GF T F) sR T F,T, (3,2 P, 1057, (0 14

#1114[IOF0T0(1,2)R0][IlFlTl(B,O)][12F2T2(0,3)][I3F3(0)R3]#

It should be clear that Fig. 48 is not a graphical representation of
strings of symbols that describes some procedure for implementing a process,
rather it is the chosen model of the process; and expression (3.6} is the
representation of that model in the form of strings of symbols. This re-
versed direction in the translation of the process description is a funda-
mental point.

From the analyses carried out in chapter 6, it appears, at the proced-

ural level at least, that a formal phrase-structure description of abstract
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\ machines ‘of ‘a proper type (machines that mey represent processes of different
_types) is simpler than’ the formal description’ of .the different types of pro-

-cesses directly in phrase—structure form. In the first case, the phrase-
structure language has. to deal always with the same’ structure (that ‘of the -
formal abstract machine), in the second case, 4t has. to deal with the variety
of- structures of the different processes. The abstract machines de’ not pose

- visible formal problems to the. user because they are the reflection of what

he has in mind. _ o c _

-In terms of the“pictorial representation of"Fig‘ I, here-we cousider“e:‘
point B (the: abstract machlnes) that is very close to.a point-A; and a’ po1nt
- C (the codes given to the’ computer) that is: directly derived from- B, as will

~ be discussed in more detail in the next chapter.
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-'Chapt_er 4
The ‘I._sotnorphic hplementable Subs-tratum

o In chapter 3, a symboh.c substratum was introduced for modeling (and
thus describing) processes in the form of "constructs" (abstract.- mach1nes)
that are v1sualized by the user, ‘The formulation of that substratum was im-~
plicitly guided by the reallzabllity of an.isomorphic. physical substratum
that could 1mplement_those "constructs". Thls “chapter describes and dis-

cusses such a physicalssubstratum.

4.1 GENERAL s'rauc'ruRE

The symbollc substratum is organlzed in a structure ‘called the Circula-
ting Page Loose (CPL) automaton, as represented in Fig. 11. Such a structure
,4is also the baslc structure of the 1somorph1c phys1ca1 substratum. ‘In fact,
it was the known realizability of such-a structure that suggested its adop-
“tion in the symbollc substratum. Because of 'its identity w1th the CPL auto-
maton, the physical substratum wili be referred to as the Circulatlng Page
Loose (CPL) system.' In essence, this structure consists of a programable
operating network and a programable memory through whlch pages of data circu-
late. However, now we have to consider certain details of the real world |

that were advantageously ignored in a symbollc context.

-4 1. 1 Interface w1th the environment

In the real world, we cannot expect the environment to be at our beck
and call. In fact, the. env1ronment is composed of perlpheral devices, usual-
ly with low speed, with their own t1m1ng, and without any knowledge of what
is going on. ingide a computer. Therefore, buffers and means for selecting

and controlling the perlpherals will be necessary Accordingly, we introduce
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two auxiliary units (Fig. 13): an "assembler" between the output of the
memory and of the environment and the input of the programable network PN ;
and a "packer' between the output of PN and the input of the memory and

of the environment.

These units provide for the interface between the system and the envir-
onment, as well as that between PN and the memory. The assembler is assigned
the implementation of the input prescription I, and the packer that of the
routings R. Every time the assembler receives a page'from the memory, it
calls for specific new input data U from the environment, responsive to the
information in I of the present state of the page. It assembles the page
into an array of registers Qa’ calied the assembler page array, which is a
replica of the registers in PN. 1In Qa’ the page assumes again the open form
that it had in PN at the previous cycle. As scon as the assembling of the
page in Qa is completed, and the programable network PN is free, the page in
ﬂa is transferred in parallel into PN. At this point, the data structure of
the page becomes part of the operational structures of the F in PN, and the
‘data transformations described in the present state of the page are executed.

At the end of the operations in PN, the page is transferred in parallel
into an array of registers Qp in the packer. Here the routing prescriptions
are implemented. Responsive to information in the R of the present state of
the page, outside devices are activated, and data are transferred. At the
same time, the variables x; in the page are pécked for transmission into the
storage medium of the memory. During this transmission, the movement of
data within the page, prescribed by routing, is implemented also.

Note that outside devices may be not ready to give or acquire data when
a page is tramsiting through the assembler or packer. A variety of solutions
can be adopted for these cases, On one extreme, the FSM can have an initial
state in which the page circulates through path B in order to acquire all
the data necessary to start the processing, and an output state in which the
page again circulates through path B in order to deliver all the results to
the environment. In the same time that these peripheral operations are
accomplished, other pages follow path o for the execution of their process-
ing in PN. On another extreme, sufficient buffer storage and peripheral
contrel can be added in order to make the work of the pages completely un-

disturbed by the environment timing.
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Fig. 13 - The basic frame of the CPL system

The introduction of the assembler and the packer, however, does not _
make the ‘system different from the CPL automaton. When the user is concerned'
with the processes, assembler and packer are inVisible.',Only when he is _
concerned with detaiils 6f inpﬁt ahd.outpﬁf.dOES the presence of the assepbler

and packer comes inte light.

4.1.2 Program allocation

When a process consists of-a,single page of data and a Vefy concise :
FSM, the description of the FSM (that is, the content of storagé P in Fig.
10) can be very well part of the cireulating page. . The qﬁadruplets,are

acquired from the environment in the initial-state; during pProcessing, the

"quadruplet of the present state is brought to an active position; at the end

af the process, all the FSM description dlsappears by not recirculatlng. .

In general, an FSM descriptlon has a size. exceeding what is appropriate

for a circulating page. Moreover, often an FSM is implemented by many pages.
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For fhese reasons, separate storage is provided for holding the quadruplets
of all the FSM in use. The pages instead, carry a key word that contains
the label of the FSM to which the page belongs, and the label of tﬁe present
state in that FSM. When a page arrives intc the assembler, a specific quad-
ruplet is acquired from that storage, in response to the content of the key,
and is added to the page in Qa.

Component I of the quadruplet is utilized by the assembler for provid-
ing the new input U, and no longer follows the page. Components F and T
are utilized by PN, and do not follow the page in the packer. Component R
is utilized by the packer, and does not follow the page in the memory. As
a consequence of function T performed in PN, a new key will in general sub-
stitute for the old one in the page; this key will indicate the next state
for the page, and optionally also a new FSM. The auxiliary page array Qﬁ
permits also the transmission or interchange of program components among
different pages.

Because the specific means that are implemented for giving the pages a
quadruplet are not visible to the user, there is no indication of them in
Fig, 13.

4.1.3 The automatic flow of data

In the CPL automaton, the user can develop abstract machines easily be-
cause an active substratum is available that pfoduces, recirculates, and
interrelates pluralities of pages. The user is not concerned with how all
this happens, he knows only the spatiotemporal frame in which the activity
occurs (Fig. 11), and the means for building and affecting that activity
{the configurations of PN and of ihe memory). A similar situation should be
maintained in the physical substratum. Techniques invisible to the user
should materialize this activity as an inherent characteristic of the system.

The actual implementation of the automatic circulation derives from the
general structure, One page at a time is prepared in the assembler by re-
ceiving old data from the memory, new data from the environment, and a state
description from the program storage. The programable network and the packer
perform their operations as soon as they receive a page. The memory builds
pages, or data structures, as soon as it receives them from the packer.

The basic page transfers can be described with the use of register
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transfer notations (Bartee et al 1962) by the expre351ons

£+t YF Nem QN) e, 5 e > oﬁ

ww fa o -. ' A
EpYF (e, ) + £ 8500 > g (4.1)
QZQH +_F539a > Qp
vwhere F, and F, are functions executed by the programable network; tl;
_ t2, ... are Boolean time fnnctions produced by a control system§ and q;
"By ... dre Boolean conditional coefficients with value, meaning, and con-

: straints as shown below. - S S

1 ¢ ¢ o o ¢ - acquisition of a new page
¢ 1 o o b ¢ recirculation of a ‘page
- ¢ o 1 d Ju] ¢ @f._ recirculatlon of a page bypassing PN
0 o ¢ 1 o. ¢ .processing of a page
o b ¢ o 1 ¢ vauisitlon from storage
¢‘ ¢ .. ] 1 storage ‘of a page or data

o The system can process in sequence all the pages through the paths oy
: and 32, it can contlnuously process a s1ngle page, condition Y; it can
input and output data w1thout 1nvolv1ng PN follow1ng path B; it can buffer
a page for a certain tlme in the aux1llary page array Q' through the trans-
fers 6 1t can produce a new page in array Q' durlng proce531ng (combina— .
tion of paths 6 2 and y) for the execution of a subtask it can intro-
duce the new page into. circulatlon through transfer 6

The registers of arrays Q and RP have one-to-one correspondence with -
the reglsters QN embedded in the programable network the packer transfers
. the data in Q into a page for the memory in a given order, the same order

is used by the assembler to allocate the data of a page into Q In this

-way each variable of a process always goes into the same register'of PN,
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during the circulation of the page, if not otherwise prescribed by the program.
These structural features of the physical system implement automatically the
virtual multiplication of PN (by means of pages) that was implied in the sym—
bolic CPL automaton.

The circulation of pages, which is always present 1if there is any activ-
ity in the system, implies a storage with properties appropriate for receiv-
ing, holding, and delivering pages of different characteristics. Such stor-
age, because it is always present, is specifically indicated in Fig. 13 as
page MEemory.

But different processes have different data structures, and even the
pages may alternate periods of circulation with periods of rest or of differ-
ent activity. For these reasons, a storage is also necessary that can assume
different properties and different partitions in accordance to the different
data structures needed. Because the extent of these storages and their
input-output disciplines are not established in advance, but are determined
at each moment by the processes themselves, the general term of functional

_memory is used in Fig. 13. Which functions are physically iﬁplemented in the
memory depends upon the design; in chapter 5, specific designs will be re-
ferred to. Obviously, it will be convenient to have always the function of
addressable storage, which in our context can be described as follows: the
access to an old variable x, (that has been routed to some data structure in
the functional memory) by means of a wariable xa in a page.

In general terms, a specific amount of storage medium is given to the
physical system; then a control is added such as to partition that medium in
several regions that implement different disciplines and that can be inde-
pendently accessed by the packer and assembler. The orders for this control
are given by the FSMs in the form of routings to particular control storages
z, (item vii in the symbolic formlation of section 3.2.1). 1In other words,

it is a hardware implementation of what usually is implemented in software.

4.2 TMPLEMENTATION

All the parts of a physical substratum that is isomorphic to the sym-
bolic substratum defined in chapter 3 are implementable with the present

technology of integrated circuits. No particular difficulty was encountered
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in 1mp1ement1ng a first CPL machlne even W1th the components avallable in
1968 (sectlon 4. 4) Thus - the real issues of 1nterest are performance and
'Vanalysis of deslgn. Documentatlon on - performance is given in chapter 6 _
'Design involves consideration of -a variety of contingent requirements that
are out of the scope of . thlS introductory report. Therefore only brief com—‘f"'
ments will be made on the more uncorventional aspects of the system, with .an

attempt to distinguish What~15 intrinsic to the approach from what are con-

' .tingent factors.

[4 2 l The programable network

Networks ‘of operating elements have recurrently attracted the attention
‘of people in both a theoretical and a practical context. “In section 2. 4
‘studies were reviewed in the context of cellular spaces and array computers,“-_
and in section 2.5 4 in the neurolog1c context.- First studies on networks of
‘logical elements appear 1n Burks and Wrigh (1953) An extended survey of
Vnetworks or1ented to microcircuit 1mplementation can be seen in Minnick {1967).
‘Examples of subsequent contributions are 1n Meo (1968) Sheldon (19?2) Jump
"and Frltshe (1972), and Maruoka and Honda (1973) Recently, netWDrks are
lstudied in the context of distributed computers.ﬂ_;ﬁ o Doy e

In this broad act1v1ty related to the notlon of network a few points _ -

.relevant to our context are discussed

Networks at, the system 1evel do not permit :an intimate collaboration of
'the availahle resources and they create traffic problems Wlth a consequent
high overhead Networks as arrays of elements have two ba31c disadvantages.‘

L(l) to perform a sPecific functlon, a complex progrannor control is néeded

‘ 7:that typlcally has no-relation with the. forms in which. ‘the functions ‘are

pv1sualized by the user; and (2). arrays require many more elements “than would'_
be needed in: especially de31gned structures; : v ﬁ

‘A notilon:that- appears of .primary concern in all these works ‘is’ regular1~
ty:. geometric regularlty, functional regularity, tlme regularlty,—etc.
Probably in many cases the- empha51s on regularity derives from the comfort
-of an elegant mathematlcal treatment more than from. pragmat1c necessity.

" The programable‘network considered here does not start from regularity

of structure. It is or1ented to the implementation of ‘the different . struc— h
tures that the user conceives for different problems. 1In a sense, it has an o

approach simllar to. that of patchboards in analog computers; the structures
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“assumed in a programable analog computer are. those chosen by the user. as the‘”
‘model of the process to. be executed.; ‘ _ L :

| It 1s not difficult to 1mplement 1n hardware all sorts of cowplex
operations compr1s1ng many varlables (spec1a1 purpose processors are such
implementations) The real question is how to form a language that allows.*
,the 1mplementations of all those different des1gns, from a standard programe_
able substratum, by the part of nonengineer users. For 1nstance in a fixed
plus variable structure computer (Estrln et al. 1963) it was expected that )
programing' should be done by a team con51st1ng of a numerical analyst, a
_programmer, and a computer de51gn englneer Yo The solution that has been found.~-
here 1s to use recursrvely the approach discussed at page 62 and already used '
'for the general structure of the CPL system.f The hardware of PN forms a pro—'_
”ugramable substratum 1somorph1c to a symbolic substratum where the user can' S

describe structures for data t ansformations that he derives from his 1mages

tf; of the data transformations -a:variety of modes are available for specifying '

.(sometlmes 1n steps) these structures, 1n order to conform to their different‘"

"‘characters.'

. In this way, the mapping (3 5) of section 3.2. 2 can be obtained by ap-
plication of rules to elements of a given alphabet with the alphabet and
the rules hav1ng a meaning to the user.‘ The’ more complete the 1somorph1sm
is, the more the follow1ng 81tuation can be approached "everything that is
: expressible in the language can be 1mp1emented in the network and all the e
'possible configuratlons of - the network (the hardware tricks) have their

logical expres51on in the language.:“'. < "_ o . L :

In this approach programability has such - depth and exten51on that no -
proce551ng characteristic can be attrlbuted to the phy51cal structure per se'-
when 1solated from the’ program. We can recognize only two principal char—'

—acteristlcs in the substratum. functionality and connect1v1ty '

' Ideally, the functions available to the various elements should includeb"
‘the functions that are recognized 1n the mental processes. Psychologists
make their research - ‘in this dlrection, see" for instance Piaget (1950) More
.fruitful results for the present context can ‘come. by maklng Such analyses
‘with particular attention to computer use. A prellmlnary experiment 1s
described in section 5.1.3. In the absence of such analyses, the few arith-

. metic and loglcal functlons can be augmented w1th others related to data"

:manipulation. Fundamental in the functionality of a network are functions in

the form of look—up ‘tables.
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Connectivity is no less important than functionality for approaching
isomorphism with mental constructs, A set of different types of connectivi-
ties is depicted in Fig. 14. In (a) is the commectivity found in biologic
neural systems, where functional elements (neurons) have tens of thousands
-of possible connections. Very probably, this approach is not suitable for
man-made devices. What can be derived from (a) in a technologic context is
the total connectivity represented in (b). Each functional element has an
output line that ig connectable to the input of all the other elements.

Note that we do not separate storages from functional resources; here, an
element is at the same time a storage of a quantity and a functional resource.

Approach (b) has the practical inconvenience that it is not expandable;
the total number of elements should be known when constructing the input
selector of each element. The éonnectivity represented in (¢) is not total
but permits an unlimited expansion.

Obviously, one is interested in the minimum comnectivity for a certain
degree of performance. Probably, this can be obtained only by means of non-
uniformity. The connectivity represented in (d) has a preferred element
that has connection with all the other elements, and the remainder elements
have connection with one neighbor, with a replica of itself, and with a
source,

Computers that search for performance without economy in connectivity
use approaches of the type represented in (e). A significant overhead due
to traffic problems is inherent in this solution. Computers that search for

maximum economy use the comnectivity represented in (f).

There is an interesting rationale in a completely programable network.
With a linear increase of hardware elements, either as number of elements or
number of connections, the operating configurations that are possible in-
crease with an exponential function, and the length of the expressions for
describing them increases only logarithmically. For given criteria of per-
formance, an optimum complexity can be expected for a PN.

The various solutions that can be adopted for the programable network
have known technical implementations. Because of the isomorphism between the
physical and the symbolic substrata, the description of those solutions can
be made either in the hardware domain or in the symbolic domain. The latter

is chosen here, and symbolic descriptions are given in chapter 5.
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4.2.2 The programable memory

A variety of media for storing digital information are well known and
established, and new media are continuously in development. These media can-

be grouped in three types, according to their inherent mode of inserting -and

_estracting data:!: sequential (e g. magnetic bubbles, tapes); cyclic (e, g

drums, delay lines), and random access (e. g. core memory).

- From any. one of these media, memory with any input—output discipline
can be formed. Early computers implemented random access memories with de-
lay lines and drums. Sequential or cyclic memories can be implemented with

core memories whose addresses are connected to a counter. Content address-

- able memories can be imolemented with serial, ecyclic, and randam_access

medie. Techniques for implementing the different'types of:memory from the
different media are well known .

~In the CPL system, the dlscipline for data storage varies in accordance

to the characteristics of each—process, thus a programable control has to‘be .
- used in the memory. In this condition, a large variety of'storage media can

be used as well.. The particular characterigtics of each storage medium will

make the control implement some modes of storing directly, and other modes

" less so. An addressable storage. offers a more uniform complexity in 1mp1e—

menting different discipllnes of data storage.

" In regard to the page MEemoTy, fixed or variable formats can ‘be used.

Suxlliary signals or flags are needed for delimiting the pagea and their
parts. The printed pages with their punctuation marks offer an interesting
example cf how information can be related to the structure of a text. Tech-
niques for implementing circdlating pages were previously described (Schaffner.
1966). - | |

'The term functionmal memory as used here refers to the organization of
the storage medium for obtaining a data acquisition generalized to e.function,
Examples are: augmentation of the present content with a new datum, as in

an accumulator; increment By one at each access performed; and substitution

~with the largest of the present content and the new datum. -Obviously,.among

the functions of the functional memory, there will be always the selective
transfer (read/write) as in conventional random access memories. Symbolic

description of functional storage is in chapter 5.
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In this section we look at the physical substratum as a computer and
analyze its structure and characteristics as compared to those of wvarious

computers that have been built or proposed.

4.3.1 Pipelining

The architecture represented in Fig. 13 clearly has a pipeline organiz-
ation. While the assembler is preparing a page, PW is processing another
page, and the packer is routing a further page. While the several configur-
ations of F are succeeding in PN, input and output buses give and take data
to and from the assembler and packer, and give a stream of state descriptions
to assembler, PN, and packer.

The overlapping of the processor and memory operations (Buchholz 1962)
1s here intrinsic to the basic structure. In conventional computers the
efficiency of pipelining is strengly dependent on the presence of a stream
of similar tasks (Graham 1970; Ramarmoorthy 1972); here.all portions of the
processes are framed in the standard form of the ¥FSM. Packer and assembler
have independent data channels, and their operation .times can be statistical-
ly matched by providing sufficient buffer storage with a first—input-first-
output discipline, thus approaching a full time operation in PN (cf. Cotten
1969).

A characterization of computers in terms of data and instruction streams
has been suggested by Flynn (1972). Here thé appropriate characterization is
in terms of FSM and page Streams; we do not deal with operands and instruc-
tions, but with data structures (the pages) and operating structures (the
FSMas). The relevant difference is not in the size but in the level. A page
is not an amorphous segment of dats. It is a self-sufficient package of in-
formation, in the sense that it contains 2ll that is necessary to perform a
portion of processing (a state) in PN. It may correspond to a job. The key
accounts for the program, new input data will be found ready in PN, and other
broadcast or exchanged data will be found also in PN (the X' in the auxiliary
page array {?'). Even when the page is sleeping in the memory, reduced to the
minimum X + key, it remains an organized set of variables because it has (in
a4 potential form) the same spatial configuration it had, or will have, in PN

for matching the operational configurations. Each word describing the FSMs
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has'a-much-higher level than that of conventional instructions because it

refers‘to-a’programable‘network rather than to a single processor.

4. 3 2 Addressin

Computers are articulated on two basic parts. afcomputing machine¥4“
the processor —_, and a storage of data.- the memory To make these. parts
work meaningfully, an addressing function 1s necessary Conventional com- ,'-

'puters feed data into the memory randomly, and thus they need to assign them
;an address, and add to the processor an address-manipulation part.

In the CPL system,rthe processor takes the form of a programable network
_ that is ‘also the storage of the data it uses. When an extension of this
storage is needed, replicas of it (the pages) are formed in a larger storage
(the memory) Moreover, the organization of this larger storage is. adapted
'1n tlme to conform to the required movement of data in the various processes.
Under these conditions, the addressing function, in the conventional sense, '
disappears.‘ In its place there 1s the: structure of each page and the groups

: ing of the pages. _ o 1 ' '

The structuring of the pages is automatic. At each moment/time, z page
has the structure that was given to it by the last union with an operating
configuration in PN and by ‘the routings._ Each operating configuration and‘
"routing in the FSMs is prepared by the user in accordsnce to. the page struc—
~ tures that are to be met. “The several state diagrams in chapter 6. 1llustrate
gthis interplay between FSMs and pages. 7

The grouping of the pages is a consequence of specific actions ‘of the
. FSMs. Pages are created by the F%Ms, new pages can be’ inserted at -any point.
of. an‘existing array of pages pages can be deleted Arrays of pages can he'.
scanned in different ways by means of commands in the FSMs. Examples of‘_
isolated pages, one—,-two—; and three—dimensional arraysaare illustrated‘in,'

_ chapter 6. | | o DR l

o Inm conclusion the main addressing function is accomplished without the
use of individual addresses, but by means of pages - as dynamlc movable stor=-
- ages =- dypamic in the sense that their structure changes- in accordance to
.the'structure of the information they hold; movable?in the sense that it is
not a physical location where.the-information‘resides, but a structure-that,
- goes from-one medium to another‘(thehPN'and'the-structurable memory) . Also

“in conventional-high—level programing languages there is no use of addresses,
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but simply because the task is shifted to the compiler. Internal addresses
ard their manipulation account for a lavge part of the memory and of the over-

head of conventional computers.

Dften in & process it is simpler to address a specific nonlocal datun
whenaver necessary, rather than to establish a special data structure such
that the datum appears spontanecusly at the needed time and place. For these
cases, the COPL system has a functional memory available, in which the func-
tion of addressed storage can also be performed.

Sometimes in a process there Is a sorting of data controlled by rules or
information not available in advance, for which no data structure can be pre-
pared in the program; that is what is called a random process. But in all
these cases the particular information that will detarmine the actual sort-
ing of the data will necessarily appear as a variable x_in the process.
Therefore, that variable can be used as an expressly cr;ated address for
accessing the needed data in the functional memory, or in some page structure.
Evidently, among the functions available, there will be the one that uses a
variable in the page for addressing other data structures.

We see that a programable substratum is capable of taking advantage
from various addressing methods. Well-designed, special-purpose digital
machines in general use few or no internal addresses; the structure of the
machine provides for the needed flow of data. Similarly, a well conceived
abstract machine (i.e., a program for the CPL system) will in general make
little or no use of addressed storage. ‘

In this light, the total addressing in a random form of conventional
computers appears as the most onerous solution. It is the price paid for
having full flexibility with a computer of rigid structure. In the CPL
system, because structuring is permitted, much less price is paid for full
flexibility. We do not need to handle addresses for all data; we provide

addressing information only when there is a change of structure.

An interesting situation also arises with program addressing. 1In con-
ventional computers, the main program uses names for addressing routines
that are stored somewhere. In the CPL system, the FSMs use words such as
the F, T, and R which are in themselves all the necessary information for
accomplishing the tasks indicated with those words (see the mapping (3,5)).

When an F or a T is attached to the p inputs of PN, an entire operating
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structure 1s 1mp1emented and the operands are already present in the struc—
ture. When an R is routed to- the memory control, a new data structure is

formed, and the data are already present in the storage medlum.

4.3.3 ‘Parallelism _ o _

Parallelism is one way for increesing the throughput of computers that
_15 actively pursuited both theoretically and practically., The classical
scheme of parallel computers consists of an array of 1dent1cal processors
obeying a common stream of instructions. The performance of this scheme is
.heav1ly dependent on parallelism in the problems. Whereas for.particular :
problens parallel computers can aehleve a throughput which is orders of
magnltude larger ‘than that of conventional computers, for. general problems
‘they face a performance degradation thet increases with the number of pro-
cessors, due to‘the difficulty for the operating system to keep busy all of
- the processors, and to contentlons in the access to the memory (cf. Chen
1971). Moreover, parallellsm is. generally not 31mply expressed in program-
ing languages.” 7

For these reasons attention is brought to reduced form of paralleslism
"in the hardware and to the_exploitation“of the inherent parallelism in the
computations (cf. Hobbs et al 1970; MAC 1970). Examples of studies toward
argeneral understanding and modeling of parailelism in the processes are in’
. Karp and Miller (1967), Slutz (1968), and Thomas (1971)
- In the CPL system, high throughput is sought by means of the special—
“izatlon of the hardware, both in the processor and in the memory. Paral-
lelism is ome of the 8pecializations'edooted in‘orogreming to the extent
“to which parallelism exists in:the oroeess to.-be executed. Two forms of
parallelism are'possible. - ' _
(1) In the programable network all the variables X can perform operations
simultanecusly and independently. Also different operations can be assigned
to these variables. Each variable can deal with its own input u and aux-
iliary data x -
{2) An array of pages.can perform the same FSM, thus 1mplement1ng parallel
processing in a virtual form. In this case the actual execution occurs
.serially,‘but from the programing viewpoint the array of pagés can be
treated as a parallel computer. Form (1) can coexist with form (2).

Interesting is the fact that questions of timing and intercommnections
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are solved in the same moment in which the user establishes the structure of
the pages and their interplay with the FSMs. Examples of different degrees

of parallelism are given in chapter 6,

4.3.4 Computer architecture

In the history of computers many designs have been proposed and several
implemented (see Bell and Newell 1971). The intent in each case is to find
the computer structure that optimizes given requirements. However, every
time that an elaborated structure has been used, it turned out that the com—
puter is appropriate for the objectives for which it was conceived, but is
less so in other respects.

Present general purpose computers, in order to exhibit a more uniform
response to the different classes of problems, adopt nonspecialized pro-
cessors, random access memories, and shift to the software the burden of im-
plementing specializations.

It is natural to ask whether an adaptable specialization could avoid
the nonuniform response of the specially structured computers, and the in-
efficiency of present general purpose computers. There have been specific
attempts in this direction, perhaps the most conscious are the fixed plus
variable structure computer of Estrin (1960-63), a polymorphic data system
(Porter 1960), and the distributed processor of Koczela (1968). However,
neither of these or other suggestions have motivated the production of struc-
turable computers.

The solution described in this report suggests a computer structurable
at a very intimate level; and to such a degree that we can attempt to make
the computer implement the structures conceived by the user in modelingjfhe
processes,

To visualize the structure of the CPL system as a computer, the PMS
representation (Bell and Newell 1971) can be advantageously used. At the
most global level, the CPL system appears composed (Fig. 153a) of a processor
P connected to a wmemory M and an environment X through a transducer T, as
any other computer. If the switches S and the partition of the memory into
the various functions are made visible (Fig. 15b), we can visualize the pipe-
line structure. Note that the arrows indicate a continuous flow of data
rather than random bi-directional traffic. If the controls K and the data
transformation facilities D are also made visible (Fig. 15c), we can visual-

ize the parallel, or in general, the specializable structure.
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Fig; 15 ‘- PMS representation of the'CPL:system

_ In Flg. 15c we .can e3511y visuallze the work of the CPL system.. Two-
flows of data, dne from the . env1ronment and orie from the memory, merge into
the programable network PN. From PN, two data flow emerge, one d1rected to
the environment and one back to the memory. Two sets of switches are basic
- to the work of the system.' the connectivity of PN (the small s in the flgure)
whlch 1mplements the - operatlonal structures; and the assembler and packer '
(the large S in the: flgure) which implement the movement of the data struc-
tures.' The memory is partltloned in three reglonS' one, Mb' for Storlng
the FSMs descrmptlons;ione, Mp, for holding the pages, which are‘virtual
feplicas'of:PN; and bﬂé,'mf, for:stering narticular'data'structures. The
controls. K dt the programable network, 'memory; assembler, and packer‘imple-
ment the dynamic structurlng of the computer in accordance with the structure

of the processes under executionm.
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One basic characteristic of this architecture is that most of the memory
is not treated as a part separated from the computing machine (the processor),
but rather as a storage of virtual replicas of the processor.

But perhaps the most significant diversity of a CPL computer is in the
different use of the user's intelligence. A programable substratum is not
enough for making a computer. Also necessary is a kind of compiler that is
able to prepare the appropriate organizations of the substratum. As is well
known, this is not an easy task; especially if the source program is in a
phrase language (cf. Wineberg and Avizienis 1972).

But if the substratum has enocugh flexibility, we can ask the user to
provide for the organization of the substratum. In particular, we can ex-
ploit the natural capability for images that all users have, bypassing a
verbal description of the process. If the substratum permits a sufficiently
flexible structuring, the user does not have the impression that he is deal-
ing with a piece of hardware, but that he is producing representations that
are no less rigorous, or less symbolic, or less elegant than the phrase
structure ones.

There is one requirement, however. It is clear that human beings do not
use the same structures for all types of problems. Therefore, the substratum
should allow a variety of structures, including verbal structures. In these

cases, some FSMs can act as on-run compilers.

A very detailed programability is favorable alse for the economy. What
in conventional computers are the different units, here are different struc-
tures implemented on the same common substratum. This brings a higher utiliz-
ation rate of the hardware. The cost of the programability, because of the
direct interpretation of words to form configuratioms, is significantly less
than the total cost of the controls in separated units for performing the
same tasks,

The organization of the computer activity in terms of pages makes the
references to the memory less frequent and more predictable, for which economy

can be derived in the implementation of the memory,
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J 4.’4 'THE CPL- 1 PROCESSOR

4.4, 1 Factual 1nformation

In the early 19603,-eff1c1ent and economlcal real—t1me processing of
”radar signals was required at the Harvard College Observatory for the Radlo
Meteor ProJect, an astrophy31cal research program.* An. effective solution -
was found in using specially de31gned hardware in conjunctlon with circulat—
1ng digital ‘words (Schaffner 1964) . Several systems based on this concept
were installed at the project radar station in Havana, Illlnois (SAO 1966)
In December 1964, at the Smithsonlan Astrophy51ca1 Observatory, a small i

'_demonstration was g1ven of the i{nstant’ implementation of different processors-
- by changing a patchboard in a general digitdl structure. The analog approach

| of structuring the machine An accordance with a. model of the process was there.

_lapplied to a completely digltal system. : :

Then, 1t was a natural step to replace the patchboard w1th program bltS.

‘In this instance, these b1ts were holes in a punch card._ Also the first IBM
computer was a Card Programmed Calculator (CPC) The dlvergence that followed'
 for the CPL system,in retrospect, can be attributed to the follow1ng reasons'
(1) the approach of organizing the machlne after a model of the process,

. analog - computer style, was retalned rather than discarded for a purely verbal
descript1on of the processes, (2) general frames already developed in auto—
mata theory were assumed for modeling both the processes and the hardware.

Subsequently, the development of the CPL 1 machine was 1n1tiated 4

'(Schaffner 1966) The first operation started at the end of 1968 ' During
- 1969 the machine was used for test1ng a varlety of computations in the labora-_
tory,‘and preparing the interface Wlth the env1ronment.i In 1970 the CPL 1 _

‘3 processor was brought to. the radar statlon of the PrOJect in’ Havana, Illinois,

where recording of faint meteors w1th different recognitlon strategles were

o made (see section 6. 3). - Then the - equlpment was brought to the Massachusetts -

Instltute of Technology (see section 6. 2) d' o

'; Under the present contract ‘an analys1s of the system was undertaken.

The context of ‘automata theory was JOlnEd w1th the consideration of studies

- of psychologlsts on mental processes, and the notion of isomorphism between

" a symbollc substratum and a phy51cal one took shape. In the symbollc sub— B

Orlglnally supported by NSF under Grant G—14699 then by NASA® under con~
. tracts. NASr—158 and NSRrOQ 015-033. :
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stratum the user describes his images of the processes; the physical substra-
tum implements those images. This study constitutes the basis for the pro-
graming language of the CPL system.

The 1966 report was made before the construction of the machine, with
many issues still to be understood and developed; the present report is made
after use of the machine, and represents a first analysis of the approach

taken.

4.4,2 Description
The CPL 1 machine has the architecture represented in Fig. 13. The pro-

gramable network PN has four wvariables X, four variables x; in Qﬁ, four new
input data U, and a key word. The controllable traits (connections and oper-
ational characteristics that can be described by program) are 148. The func—
tionality at the variables initially comnsisted of setting, resetting, comple-
menting, shifting, transfer, summation, and subtraction. Then special func-
tions were added as they became desirable. Many of these functions have a
variety of controllable details. The connectivity is of the type indicated
in Fig. l4d. The registers that hold the variables can be cascaded in order
to form words of different length., The basic segment is 12 bits long.

The program is stored in a separate storage. The key word of each page
acquires into the assembler a state description which is composed of four
4-bit words for the input prescriptionm I, three 12-bit words for the function
F, four 4-bit words for the function T, one 4-bit word for the routing pre-
scription R, and a 12-bit code word. The bits representing I, F, T, and R
are interﬁreted in different ways according to the content of the 12 bits of
the code word. One of the most interesting aspects in designing the CPL 1
machine has been the realization of the possible utilization of the totality
of the bit patterns in a meaningful language - the mapping (3.5). For this
reason, simple 12-bit words can describe a full configuration of PN. In each
page cycle, up to three different configurations can be implemented for F,
and one configuration for T. All words WF and WT are implemented directly, and
No microprogram processor is used. The FSM descriptions are written on punch
cards; the format used is described in section 5.3.

The assembler has three page arrays ﬂa (Fig. 13) for matching the data
rate of the memory with the processing times of the programable network.

Available inputs are analog signals, digital words, and numbers set on dials.
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The packer has an output buffer to permit the recording of output data
simultanecusly with new processing om the part of the pages. QCutput peripher—
als are a magnetic tape récorder, a fast printer, and oscilloscopes. All
variables x_ can be observed during their passage through the packer, in both
analog and digital forms; this feature permits the display of the evolution
of quantities of interest during computation. . A diagnostic facility permits
the damping of all variables at the exit of each cycle, or alternatively at
each change of state. The reasons discussed in section 5.4.1 with regard to
the ease of debugging programs apply also in the-ease of checking the hard-
ware - another consequence of the isomorphism between the symbolic and the
physical substrata. ' |

The memory is implemented with MOS devices. Part of it is used for the
c1rcu1at1ng pages, and part for particular data functions.

A separate supervisor unit receives information from a dlgltal clock,
operator push buttons, and a supervisor program; as a consequence of this
information, the supervisor injects into circulation pages of different FSMs,
at proper time and range intervals.. In one program card of the supervisor
it is possible to schedule for an hOur'df processing up to 15 FSMs in con-
secutive or periodical different afrangements, with the resolution of ome
second in time and one kilometef in range. ' -

The entire equipment is contained in.22 printed circuit cards. In Fig.
16 the CPL processor and the supervisor unit are visible at the right of a

rack of peripherals and the radar console.
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<

Fig. 16 - The CPL 1 machine at the M.I.T.'s weather radar
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Chapter 5
The Programing Language

-In chapter 3 a symbolic substratum for abstract machineSVHm introduced; :
details that are -not fundamentul to the structure of the substratum, and are*:
thus open to a varlety of. implementatlons, were not given at that time. In'
chapter 4 a phys1cal substratum 1somorph1c with the symbolic substratum was
descrlbed again without detalls pertlnent to particular. implementations.

In this chapter we give actual means for describing the. abstract machines,
and-molding the ‘physical.substratum in accordance with them, 1ncluding choices .
. for those details. These details'apnly to both the symbolic-and the'nhysical_
substrata. A preliminary discuss1on on the role of a programing 1anguage

" begins the. chapter,'and a. comparatlve diSCUSSlOD in - reference to. other pro-

4gram1ng languages concludes it.
.5+1 INTRODUCTION

5.1.1 - The role of the programlng language

Follow1ng a class1f1cation of Burkhardt (1965), programing languages'
for digital computers range from ' ' AR kR

- machine codes

to assembly languages

~ procedural 1anguages
_ - specification languages
and - declaratlve languages

in accordance with the use made of 1nterpretive or translating routines
(compilers). Languages were also proposed that simply state the problems,

" without indicating the solution to be used (cf. Schlesinger and Sashkin 1967).
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This extreme case however cannot be viewed simply as a programing language,
but should be considered more as a system of solution finding.

It is a characteristic of conventional programing that a process is
described in several forms: in the user language, possibly in the inter-
mediate languages of the compiler, in an assembly language, and finally in
the actual binary codes of the computer, In each one of these forms the
process is completely deécribed; each form is obtained from the previous
one by translation, All these different languages can be wviewed as formal
systems of verbal structure (although the machine codes are at the limit of
such a view).

Programing procedures for analog computers, instead, need a completely
different approach, These procedures involve such a diversity of activities
and gadgetries that they can be hardly viewed as a language. However, be-
cause they convey definite information, they constitute an actual language
in the broad sense. In such a variety of contexts, it is not pessible to
define the role of programing languages in general, we can instead clari-
fly the role of the programing language in our context, and confront it
with the typical ones in other languages.

In clapter 3 we developed a method for modeling processes. Modeling
relates to the mental structures employed by the user during the conception
of a process; 1t does not relate, in general, to an actual computer, In
chapter 3, however, we were careful to frame the modeling in a way that can
be related also to a physical machine. The products of this modeling can be
thought of in the context of automata; to avoid ambiguity with automata of
well-known formalizations, we offer the term abstract machines. Thus we need
to familiarize ourselves with the notion of abstract machines as a "language”
in the broad sense of a means of communication, in the same light as the
verbal structures used in digital computers and the hardware structures used

in analog computers,

We are familiar with phrase-structured languages and with mathematical
languages because of education. If we were never taught about them, we could

hardly spontaneously develop something similar in a single individual 1life.
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We do not.think of abstract uachines as'a language because we are notrtaught
in‘that' senge. . But from the discussions in chapter 2 ic appears that 4t is
g the one for which we have a natural 1nclination. It results from our’ sen-
sorial experience since- birth and from the continuous realization of the o
cauSEeeffect relation. To - think of imaginary (abstract) objects in recip—
rocal relations is a natural activity._ Children s draw1ngs are an example.
‘The sketches we make on a piece of paper, or on the blackboard to help des--
ctribe a difficult problem are another example. | '

A language is formed because of practical necess1t1es or convenienceS'_
and from these, the characteristics of the language derive. The spoken j |
languages developed for communicating all kinds of information, in a noisy
environment, without need-of actual~rigor. . These languages are very flex-. '

‘ble, all present a remarkahly constant amount of redundancy, and all have i
some degree of ambiguity. ' , . ‘ 4

" The mathematical languages came. out for the complementary need of ‘com—~ -
'municating w1th rigor a well—delimited type of 1nformation in a protected '
environment. These 1anguages have verv 11ttle flexibility, tend to elimi—
- nate redundancy, and do not- admit ambiguity. ‘

. For the. purpose of communicating with computers ‘we: may 1mply a quiet
environment, we need rigor, weé cannot accept ambiguity, and we strongly

'de51re a flexibility that can follow the multifacets of human thinking.

Programing languages of digital computers are sharing more and more B
the potentially infinite -power of verbal languages. ‘However, we have to.
recognize that for practical necessities they do not excel in flexibility.

'Moreover, they dmply - the complex translatlons dlscussed in. chapter 1.

The procedures used in. analog computers are very effective, but they cannot

‘compete ‘with the generality and elegance of the phrased languages. In our

approach,‘we bring the physical computer_to take the same structures-of'a

, symbolic system'that has-the'role'of'a 1anguage.' The interesting results
obtained by applying this approdch have motivated this study.

In order to utilize the symbolic system of chapter 3, of . which we
1mp1ied a corresponding physical system in chapter 4, we need now to define
a detailed set of symbols, rules, and conventions for documenting the pro—-

ductions in ‘that system, that is, the abstract machines. In other-words,

‘we need to provide the means for the extermal representation of the abstract
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machines devised by the user, HNote that the means for the external represen-
tation do not constitute, and do not constrain the programming language,
which is the substratum where the user develops the abstract machines.

We do not know whether it can be practical to bring the physical sub-
stratum of chapter 4 to the precise level that is appropriate for the user;
or, put the other way around, whether it is practical for a human user to
conceive abstract machines at the level of economical physical substrata.
Therefore, we keep two successive levels, the same that were indicated as
points B and C in Fig, 1 of chapter 1. For these two levels we introduce:;

(1) A user language - A format, a set of rules, symbols, and
conventions for representing the abstract machines, so as to form "a working
language" and "a guide for all hardware representations'.

(2) A machine language - A set of symbols and rules for repre-

senting the abstract machines in a form that can be accepted and understood
by actual machines (the physical substrata), that is, hardware representa-

tions.

The two levels do not represent different languages, They are ex—~
ternal forms of the same language that are oriented to different users, one
human, and the other, electronic. Because of this different orientation,
they may differ in some characteristics, What is important is that one
form can be directly derived from the other, because of the isomorphism
between the two substrata. In the examples of chapter 6, different degrees
of proximity between the two forms can be observed.

In the ALGOL 60 Report (Naur 1960) different levels of language were
recognized; namely, a Reference Language, a Publication Language, and Hard-
ware Representations. Our levels (1) and (2) have roles similar to those
of the Reference Language and Hardware Representations of ALGOL. To outline
these similarities, we put quotation marks at the terms that have the
same application as in the ALGOL 60 report. However, there are some differ-
ences, For instance, in ALGOL a hardware representation is obtained by
translating a phrase structure into another phrase structure; here, it is
obtained by transforming a multidimensional structure into a string of sym-
bols, as discussed in section 3.4.4, However, the one-to-one correspondence

between the elements of the two representations always holda. 1In the ALGOL
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Reference Language; the entire structure of the program is expressed exclu-—-
sively by means of lexical and syntactical characteristics; here a great re-
 course to spatial relations and to graphic means is made. In ALGOL, both
the Reference Language and Hardware Representations provide source programs;
the object programs are a quite dlfferent affair. Here, the hardware repre-
sentations prov1de, in gemeral, .actual object programs. '

To take account of all_these facts, we call level (1) the "user lang-
uage" and level (2) the "machiné language". Their precise relation to high- -
level, reference, implementation, and machine languages of coaventional‘pro—

graming will be discussed in section 5.4.1.

5.1.2 - Preliminaries on the user language

~ There is no doubt that the form of expression is rery jmportant, It is

Wellrkuown to-psychologists that languages further in the child the develop-
- ment of some classesiof mental structures and not others. In pedagogy, the
cases are well known in which traumatic experiences with-high school mathe-
- matics have erected barrierS'aroond that:part of the cognitive field labeled
"abstract symbolism" (Inhelder and Piaget, 1959, p. vii). Pager (1973) ‘
'poiots oot the inconveniencesrof information representedfexclusively in
_phrase form; and suggests augmenting the language by means of various de-—
vices. ‘ o | |

In programming the influence of lanmguage is undoubtely no 1éss_ﬂeter—'
miﬁant. Solutions are conceived or not, depending on whether the program-
.ing language allows their construction and representation or not. A
page of listing of today § programs would not particularly attract 4 nonspe—
"cilalist to develop a symbiosis with the computer. Echoing Whorf s (1956)
hypothesis that the. structure:of the language influences the manner in which
humans understand reality and behave, one can simply mention the possible
.influence on those who use-computers of changing from a ‘command language
to that of mental iﬁages. At least, when programing in the form of ab-
stract machines, the user would not feel himself to be a slave of the com-
puter since he would have designed its characteristics.

Fortunately, the phrase 1anguage is merely one particular instance of
the semiotic or sywbolic function (Piaget, 1971, p. 46). The discussion
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on modeling and representation made in section 2.2 now comes to fruitiom.
We noted there, in several different contexts, the recurrent use of images
and words in the common task of transmitting complex information, that is,
the simultaneous use of different forms of expressions. Obviously, it
would be advantageous for the programing languages, which have to repre-
sent so many varieties of processes ranging from mathematical computations,
to payroll preparation,  to modeling of intelligeunce, to take advantage of a
plurality of forms of expressiom.

Forms of representation and of modeling are not independent. Each one,
in a sense, preselects the other. Here there are two facts that favor a
large latitude of representations. 1In the first place, the modeling is in
the context of automata. As noted in section 2.3, automata have appropriate
representations in a variety of forms, such as algebraic systems, verbal
structures, and operational constructs. In the second place, here we use a
physical substratum isomorphic to the symbolic substratum. It is precisely
the use of these two isomorphic substrata that frees us from the severe con-
straints posed by the automatic translation of the source programs into the
object programs - constraints that dictate the exclusive use of a formal,
phrased language.

It is highly desirable that the form of representation can keep as much
as possible the flavor of the abstract machines. From all the discussions
in chapter 2, we can readily assume a basic representation for the abstract
machines in the form of a kind of state diagram. Diagrams are not new. In
automata theory, the state diagrams are a well-recognized form of representa-
tion. In programing, flow charts are highly recommended (but scarcely used).
Schemas are a new form of analysis in computation theory (Manna, 1973).

One observation is in order here. Graphic means have been used so far
as an accessory, auxiliary representation of certain aspects of a process,
typically the control structure. Here, instead, the diagram will be the ref-
erence representation, Other forns will be derived from it when necessary.
We will, also, always keep present the complementarity and the collaboration
of the two main symbolic systems in the mental processes. Therefore, we will
formulate a global representation of all the aspects of a process, by using

similtaneously graphic and wverbal structures, taking advantage of the first
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especially for representing the dynamics and the .constructs of the process,

:, and of ‘the second especially for representing single characterizations.

The fact that the reference language uses graphlc means as a main con— _

stituent does not appear to 1mply 1mpracticality, although present programing

a languages avoid graphic means., As discussed in seetion 3.4.4, our state dia— .

grams can readily be expressed in the form of symbol strings, when necessary
for machine communication.f If a need emerges for automatic equipment that
can accept and manipulate graphic expressions, undoubtedly 1ndustry Wlll pro—,_;.”
vide 1t. o L ol N . . o
Processes modeled in the form of abstract machlnes have a natural repre- -
sentation in graphic form. If moreover, graphic means favor the 1magination

" of the user there is no reason for not u51ng them, .

.5,1.3 =~ An experiment in applying modes of thinki_grto computer feature

In chapter 3 the bas1c structure of a symbolic substratum was given,i
'however, detalled features of the substratum were omitted This was done
purposely, because 1t is important that these detailed features are care— L
"fully chosen . in accordance with pyschological characteristics of the users,
rather than being formulated arbitrarily, and this needs long. experience.
“_In this chapter, a minimum set of necessary detalls are described -as. they
| are at present being Worked on. One of these features has been developed

1n.terms.of pyschological characteristlcs as'reported in thiS'section.A

One of the ba31c elements of our substratum is- the tran31t10n function.--w

The effectiveness of a wealth of transition functlons for. describing complex
'processes in a 31mp1e form was recognized since the first use of the CPL.
machine.- But tran51t10ns can. be eas1ly recognized also in our mental pro~
cesses' trans1tions between 1tems, times, actions, situations places,k.
"-states of mind etc., are fam111ar and natural for everyone. Even w1thout
a specific psychological backgrOUnd on the subJect, wefelt ‘that an inves- -
tigation on the modes in whlch trans1tions occur in thinking could ‘be useful.
© for providing appropr1ate trans1tion functions to the symbolic substratum.
A variety of people with different act1v1ty, age, and training have
Vbeen ‘interviewed. The form here shown was used to facilitate the extrac—
tion of ‘the wanted informatlon from the 1nterv1ewed people. In order to .

bring the interviewee to the issue, transition is presented first as a physi-
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cal transfer from one place to another. Eight modes {(upper part of the
form) are presented as applicable te planning a trip, for business or pleas-
ure. The relative applicability of these modes is asked and results recorded
as ordered pumbers in the form. At this time the person being interviewed
is already "in" the notion of tramsitienm, and sometimes is able to mention
some other ways of looking at it, ways that are transcribed if different
from the eight examples given.

Then the notion of transition is presented in the sense of "changing
mind", "changing situation', "changing status". The various reactions,
comments and sayings of the interviewee are interpreted and if an interest-
ing pattern of the transition appears it is noted in the second half of the
form.

The population interviewed included students, professicnals in differ-
ent fields, and people in a variety of occupations; their ages ranged from
11 years to mature age. The following is a sample of some relevant ex-

pressions obtained.

I will stay there for a certain number of days.

I will go there, and then I will see.

I will go to C, and I might stop in B.

I will stop there for a certain time.

Temporary block.

Several plans performed sequentially,

Canceling the plan, and making another.

Discuss this, before you forget.

OO~y b W N

If I think many things at a time, the efficiency decreases.

0f great interest have been the answers in regard to visual or verbal
thinking, and serial or parallel mental activity. Undoubtedly, a wide
variety of forms of thinking exist, and at the same time many common modes
are used. Comparable numbers of people said that they think in images or
in words; but after further introspection, said that actually they were
thinking in both terms. Few people felt that they were thinking definitely
either in images or in words. The majority of people reported that their
cogitation is serial. A very few, however, claimed that their mental

attention is completely parallel.
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7 Expressions such as. 1 in the list ‘has suggested the STAY function (see _”
dsection 5 2 4). Expressions Such as 4 suggested generalizing the stopover &
'tran51tions to. 1nc1ude temporary staying. The emph351s expressed by people
."on the condltionality ‘and priorlties in stopping and changing plans pro—l
duced the development of features for specifying pr10r1t1es and OptanS on -
‘several conditions. ) 1 ' o
4~..‘ The work done in connection with the reported interview has further
confirmed tne effectiveness of the transition funct1ons in modeling pro-r
_-cesses, has contributed to the formulation of these functions, and has -
demonstrated at 1east for this case,'the pos31b111ty and the convenience cf‘”

modeling computer features after ~common features of people 8- thinking.

profes :

date. 7 {plate

T aisple cransicion

'.‘condlt. “'g

ane stopover

‘several atopovers

condstional stopaver

a pinn

- seversl tentative phn-

-'.snédendivenion' R o R ‘ -

i natur. 1 fregs

" ppacificatiion of :each ,ste;')

i sutomatic sequence of =

¢thange of mind T : A R
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5.2 THE USER LANGUAGE

5.2.1 - Structure of a program and its representation

For the CPL system, programing is to devise an abstract machine that
performs a desired process.

These abstract machines are derived from the mental image that the user
forms of the processes. These images should be channeled, oriented to the
symbolic substratum of chapter 3, to yield the development of appropriate
abstract machines in the substratum,

These machines are composed of elements from given collections, and are
assembled in terms of certain mechanizations. These collections and mecha-
nizations constitute the user language.

A program consists of the description of an abstract machine., These
descriptions are made up of symbols, graphic and verbal, that indicate the
elements used and the mechanizations involved. Each of these elements and
mechanizations are simple in themselves. Complex processes can result from
parficular structuring of the abstract machines; however, the description
of the machines remains at the level of the simple elements. :iere we do
not describe the execution of a process, but rather we describe a machine
that will perform the desired process as a consequence of the particular
structure we give the machine.

The symbolic (as well as the physical) substratum allows two types of
structures: operational structures, the FSMs; and data structures, funda-
mentally the pages. A process is the outcome of the interplay of these two
types of structures.

The user is given a standard frame for developing these interplays:
the spatiotemporal frame represented in Fig. 13. The FSMs and the data
structures merge in the programmable network PN, An FSM is a set of states
that are operational structures and commands upon data structures. Primary
data structures are sets of pages, each with a key which refers to a state
of an FSM. When a page comes into PN, it implements a portion of an FSM, a
state. In turn, that portion of FSM acts on the page, and optionally affects

also the data structures,
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5.2.1

Simultaneously, a flow of data from and to the enviromment is available
at the assembler and packer points.

An auxiliary page storage Rﬁ is available in PN for facilitating the
data transformations and for interactions among the pages.

An auxiliary functional storage medium is avallable in the memory for

special data structures that can interact with the pages.

An FSM is represented in the form of a state diagram, with graphic and
alphanumerical means (Fig. 17). The states are indicated as domains encir-
cled by a line (dashed areas in the figure), within which the components
specific to the state are written. The paths of the transitions are indi-
cated by arrows and special symbols in the space separating the states,
Components related to transitions are also indicated in this space.

An FSM can consist of one isolated state, a group of connected states,
or even several groups of connected states. Whether to consider separated
groups of states as independent FSMs or as one large FSM is matter of stra~
tegy in modeling a process.

A state is composed of the four components I, F, T, and R, some of
‘which may be not preéent, and some of which may be composed of several sub-
compohents. The modes and rules for describlng these componehts are indi-

cated in the following sections. Examples of state diagrams are in chapter 6.

The pages are created, transformed, rearranged, and eliminated by the
FSMs, by actions of the I, F, T, and R, The TSMs can act insofar as there
are pages that implement them. For the start of each program, obviocusly, an
outside intervention has to inject at least a first page into the frame of
Fig., 13. Tt should be noted that in this frame the pages are to call for
pieces of program (the present state), rather than programs to call for data.

The pages are organized in different ways to conform to the data struc-—
. ture of each process, These organizations are implicitly described by the
FSMs. However, they can be independently represented, if that is appropri-
ate for visualizing or documenting the program. Pages can constitute a
'plurality of independent jobs; a linear array of similar sets of data (as in
the program of section 6.2.1); a two-dimensional array (as in the program of
section 6.4.1); or a mixture of various structures, as in the representation

of Fig. 18 (which refers to a program discussed in section €.4.2),
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5.2.2 - IXPUT PRESCRIPTION T

~ Three categories of input objects are considered:
- quantities® that are written in the program itself;

- quantities®* that are in some storages of the machine, which are
referred to with names such as M, N, P . . .

- quantities* that come from outside sources, which are referred

to with names such as Sl’ 52’ S3 e e s

~ k new inputs u, are possible for any given CPL machine, say
u . e .
17 Y20 Y3 Y
- An input prescription consists of an ordered list of assignments for the u,

example: 54 -=-8M0

it means: vy will have the present value*® of S4

u, will be empty ( = 0 )

u " " " n

3

u4 will be = 8

ug will have the present value** of M

u, will be = 0

the following u; will be empty ( = 0 )

In the state diagram, usually, the input prescriptions are not indicated, be-
cause the chosen input quantities are apparent in the descriptions of F and T.-
But they should be kept in mind in regard to which set of inputs is available

in each state. The input prescription is compulsory in the machine programs.

* The physical substratum is supposed digital, at least for the user's view-
point. Thus all quantities are treated as numbers. Of course their mean-
ing varies from process to process, and even from moment to moment in the
Same process,

**Present value, in this context, means the value that the source possesses
when the page in question is activated, namely, when the page enters the
assembler.
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5,23 DATA TRANSFORMATION F
- The variables and data available_to'the programable network are:
(1) ‘X, process variables in the page ( in QN )

(2)  x! variables in the auxiliary page array ( in Qﬁ )

o ]

(1) u,. new input data
(4) x;' variablés in the following page ( in QaJ)
(5) x;'! variables in the previous page . ( in QP )

(1) and (2) are the varisbles that can be transformed; (3), (4) and (5) can
only be read. In the programable network varlables {1 and (2) assume a new -
'-,value as.a function of themself and of other variables and data in the network

as indicated in the general expre331on (3. 2), here repeated.
X(1+1) = F [ X(1) , U) ] -

The usual way of expressing functions often involves a'sequentiai.appli;
cation of simpler enerations. Correspondingly, a sequence of different net—
work configuratlons is used, within the cycle of a page in PN, to perform the
total function F.

- Here,the mapping (3. 5) of page 80 has to automatlcelly provide these
EOnfigurations from the user's expre531ons.' A form is suggested for these
expressions that; on the one hand, matches a mode of thinking, and, on.the
other hand,'marches the characteriaticsAor-eonstrainte of a physical netwnrk.
Firat, the variables that ere to be tranafbrmed are name&; second, the rype-
of'bperation to be perfermed iS'indicated' and tliird, the variables and data,
if any, that are read for obtalnlng the transformatlon are named. it‘iS'un- .
_derstocd that the reading of the variables is made before that the transfor—
mation takes place; i1f the same variable appears in the first and in the
_third parts of an expression, its old value is implyed in the third part,.'
while the first part‘represents its new'valuer. This corresponds to the as-~

sumed convention of time, as indicated in Fig. 9 at page 74.
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The variables will be indicated with specific names starting with a
capital, or with capital letters (A, B, C, ...). The variables in the
auxiliary page array, in the following page, and in the previous page will
be indicated in the same way but with the addition of ome, two, and three
primes, respectively. The new input data will be indicated with specific
names, all in lower case, or with lower case letters (a, b, ¢, ...). Because
of the syntax of the language, the form chosen for the expressions, and the
use of specific allocations in the state diagram, the lexical characteristics
are here not ecritical as in conventional programing languages,

The functions are indicated with symbols, as suggested in the following.
Because the user language is the state diagram, it is important that the
functions be indicated in a coincise, possibly selfexplanatory form. It is essen-
tial that the meaning is given without ambiguity; but the lexical character-
istics are irrelevant; the symbol rigidity required by a computer is posponed
to the time of the actual coding of the program. The functions that can be
used depend on the implementation of the language. The approach taken here
is to allow the user to develop a program as much as possible in his own
terms; then, gradually, the program is refined in terms of a specific imple-

mentation of the language. Context dependency is here highly beneficial.

The CPL system has the facility of producing data transformations
globally, by means of operational networks, rather than by means of sequences
of commands. Therefore, the language should give the user the contrel of
this facility. The approach is again that of using a correspondance between
possible structures of thinking and possible structures of the physical

substratum constituting the programable network.

When we think of a network, we look at it as a parallel array, if there
is a regularity of repeated characteristics; we look at it as composed of a
main element and collateral parts, if all operations relate to a single
variable; we look at it serially, one part at a time; if the network is
composed of a distributed set of elements performing different, dependent,or
independent functions; and we think of it as a unit, without entering into
details, if we are already familiar with what it does. According to these
natural ways of thinking, and in agreement with the structure of PN, four

modes of prescribing data transformations are established.
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Mode 1 - Collective prescription (an assignment of a similar function
' to several variables x_ ).
In the user lanéuage, this prescription is made by listing the names
of the variables involved, followed by the symbol of the operation, and b&
the arguments in an order cofresponding to that of the variables.
E le: ' ' ' -
. ixample ABEF ] abcd
This mode correspond, in a éense, to the vector operations, but it is

more flexible. As an example, in the expression
ABCDA'E J abeD AF

ABC and abc can be viewed askcompbnents of the vectors X {the main variables)
and U (new input data), respectively; but A' and D' are components of the same
vector X' andﬂappear with a different role in the expressioh; moreover, E
(component of vector X) accumulates ¥ which is another component of the same
vector X. Suéhlan~eterogeneous composition,of'variables does not pose prob-
lems to the machine, because of the isomorphism between structure of the -

language and structure of the physical substratum.

Mbﬂe 2 - Multiﬁle ﬁrEScriptiou (differént fuhctions assigned to dif-
ferent variables}. | | 7 ‘ _ '

The description of each function for each variable is madé as in Mode
1; and an indication is added signifying that the functioms are executed as
a singlé network. 1In the prefefred user language, this indication is a

square parenthesis enclosing the entire preécription. . As an example:
[AZa, B=b, Cx2, D+ 1]

Obviously, in this ¢ase,ra£tention should be given to the relation among
the variables; these guestions appéar.clear themgelves if the user thinks
of a physical network. For instance; the following prescriptions are per-
fectly valid - ' '

[ALB, B=A]

{Ax4, BLZB', A'B' = AB ]

In the first prescription, B will hold the previous value of A, and A the
sum of the two. In the second prescription, A' and B' will show the orig-
. inal values of A and B,respectively, while A will double and B will sum

the original value in B'.
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Mode 3 - Individual prescription (a complex functioncentered to a vari-

able).

If only one variable is to be transformed, the entire network can be
mobilized for a particular operation, without the possibility for ambigui-
ties. Simple examples are:

AZ log B

(CC) £ C
In the second example, C and D are treated as a single variable that accumu-
lates the most significant part of itself; configurations of this type can

be advantageously used for finite approximations of differential equatioms,

Mode 4 - Special transformations (that were developed for specific re-
current tasks),

In the use of a computer dften a group of operations are used and re-
peated in many recurrent jobs. It is thus desirable, for the simplicity of
the programs, or for the speed of the execution, to have that group of
functions executed by means of a single specialized network. In these
-cases, the complex network is not described any longer, but simply called

by means of a coded word.

In conventional programing, a specific data transformation has to be
built in terms of the functions available in the programing language, sup-
plied with auxiliary commands. Only in particular cases, the desired data
transformation can be framed as an executable statement; in most cases, a
specific sequence of statements and control commands -- a routine —— has to
be devised. A similar procedure could be used alsc here; however, the pre-
sence of an entire page in the network and its programability make a more
direct implementation possible, A larger number of desired data transfor-
mations will correspond directly to expressions that can be formed in one of
the four modes. A succession of such expressions in a state glves the state
a significant processing capability. In this context, a state will in gen-
eral correspond to a phase of the process as viewed by the user, as testified
by many of the examples in chapter 6.

The establishment of specific functions to be made available in each mode

requires a thorough study of algorithms and programable networks. General
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outlines and specific 1mplementations are glven in the f0110w1ng.

Mode 4. represents the hardware 1mplementat10n of recurrent special data B
transformations., The 1nterest1ng‘point is that, when a programable substra- -
tum isiavailablé, these.@ﬁpleméntations do not require hardwaré‘intervgﬁ-:
‘tions; they_éan:be implemented1byrthe user, when needed, with a preliminary
construction in_terms'of_thelother modés; 4
- 'Mb&e 3 repreéents fupctioﬂs thét are not a unifofm attribute of the sub-’
' stratum; that is, functions that either cannot be performed-simultaneou51y
for all thé.Variables, or that are~available-oﬁ1y to some privileged vatia—.'
" bles. Tﬁié‘modq‘is:the'one most closely related to conventional microprogram-
ing; Functions in look-up-table form are to be prescribed in this'mode“élso,
_because only.one table ber functibn will Ee geﬁerally available, In the |
'CPL 1 machine, this mode has beenlimplementeﬂ for'some hard-wired functions
at priv1leged variables., . “ | :

_ '_ ‘Modes 1 and 2 refer to uniformly programable functlonallty of the sub—
Stratum' that 1s functions that can be 1mplemented 81mu1taneously and inde-
- pendently for all vaiables, The dlstlnction betwegn mode 1 and mode 2 is’

. introduced only for. simplifying the language-that deScribés thé networks;
‘Mode 1 has been analyzed and 1mplemented to- a certain extent' in the follow—
ing, samples of the richness of functionallty achievable in a programable
:substratum are shown; worklng notations that are used in the state dlagrams‘
' are_also indicated, in the form of examplesJ. |
Setting | 7 ' T '

- To zéro (¢1Ear). :Notétion: Aé’ABCb‘

- To the maximum value (binary 111 ...). Notation: A max

- To the absolute value (A.flﬁl); Notation: A]]|

QJComplement'(Boolean function). Notatidn: A tompl

Shifring . , o -

- To the right for n binary positions. Notétioh: Ak (k=2D

~ To the left for n binary positions. 'Notatibn: AXk (ku= 2“)- _

Options: (1) Several words cascaded; mnotation (AB) : k. (2) Injecting one
rather than zero; notation A : k. (3) circular; notation AC:)k. :

- Bit reversal. Notation: A rev B, Interpretation: A assumes the reversed
patterns of bits present -in B, and B remains unchanged.
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Increment

- The variable 1s increased by one., Notation: A B C +1., Interpretation:
A<~ A+l, B« B +1l, C < C +1; when a variable reaches the maximum value,
no further change occurs even if prescribed.

Option: the variable overflows and restarts from zero; notation: A(:)l

- The variable is decremented by one. Notation: A B C ~l. Interpretation:
A+ A-1, B+B -1, C+ C -1; vhen a variable reaches zero, no further
change occurs, .

Options: (1) the variable assumes negative values and stops at the maximum
negative value; (2) when the variable reaches zero, It starts again from
the maximum value.

Transfer

— Copy of a value., Notation: A B C =D E ¥, Interpretation: A<« D, B+« E,
C « F; D, E, and F unchanged.

~ Movement. WNotation: A B C+ DETVF, Interpretation: as above, but D, E,
and F are cleared.

— Interchange, Notation: A B C 3D EF. Interpretation: A < D, B + E,
C+~F, D<A, E+«B, F+«_C,
Selection

— The largest value, WNotation: A larg AB. Interpretation: A assumes the
largest of the values in A and B} B remains unchanged.

- The smallest value. Notation: A smal AB, Interpretation: corresponding
to that above,

— Mean value., HNotation: A mean AB, Interpretation: A + (A + B)/2, B re-
mains unchanged.

Accumulation

~ Summation. Notation: A B C XL ab c. Interpretation: A<« A + a, B « B+b,
C <« C + ¢; the variables do not exceed the maximum value, positive or
negative,

Option (1): cascaded variables; notation:(AB) I D; interpretation: D is
accumulated in A, B constitutes a continuation of A.

Option (2): free overflow; notation: A B i a b; interpretation: when each
variable reaches the maximum value, the accumulation continues from zero
value,

Option (3): the variables do not assume negative values, and stop at zero,

~ Subtraction. Notation: A B C - a b ¢, Interpretation: A+ A - a, B+
B-b, C+ C~ c; the variables do not exceed the maximum values,
Options (1), (2), and (3) as above.

— Absolute value of the difference. Notation: A |~) B. Interpretation:
A<A-B, if A> B; A+ B - A, if B > A; B unchanged.
Product

- Limited precision. Notation: A B CIl a b ¢. Interpretation: A + A X a,
B+«Bxb, C+«Cxec.
Options of different precisions in privileged variables.
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7.Boolean funetions L

.~ AND, Notation' A AND B. . Interpretation., each bit of A assumes the value

of the AND function of. the corresponding orlginal bits in A and B B re—
mains. unchanged :

'~ OR, Notation: 'K OR B.. Interpretation; aS‘above, buit using*the~OR func-

: tion.

.=~ Exclusive OR.. Notation: A. EOR B. ‘Interpretationt las above,'but using

the 2xc1usive OR function. :

One of the ba31c characteristics of a programable substratum is the eon—

nect1v1ty. The connect1v1ty poses constraints to the expressions above de-

'-:scribed In reference to Fig. lac, we can define a distance d between twu j'

"varlables xl and xJ by counting the number of variables from xi and xj (1n-1“

o cluded), in a glven order. Therefore, for any given phy51eal substratum, a

pconstraint w111 be in the language, for which d in’ the expre331ons of mode 1
'hshould be not greater than -a given value k.. ~ The value k may be different in .
Athe two opposite directions in the sequence of the variables. Privileged

fvarlables w1ll generally ‘have’ larger k than the other variable'—in Fig. 14d

-_-the f1rst variable does not have constraints of distance.

Function F 1n a state can be also devoted to activities to be performed'

,1n PN by other pages. This is ome of the means for making concurrent work

by part of several FSMs and pages pos51ble. The driven tran51tions, section

o 5 2. 4 (l)e, are prescribed a5 an F function by part of the FSM that orders -

that performs the routing. The driving page prescribes the routing ‘as an

'hthe transition.‘ The notations used 1n the state diagrams and their 1nter-

"pretation are as follows.

ST n f. next page transfers to. state n of its FSM.

. ST,n,(k) E .all pages of FSM k. transfer to state n, .
ST n all  all the following pages (of the present memory segment)

transfer to state n of their respective FSM

he driven transitions supercede any transition function T that ~may be de—

scrlbed in the present state of ‘the dr1ven page.

Also routing prescriptions can be driven by a page other than the one

F‘function. The notations used 1n the state diagrams and their interpreta-

‘tion are as follows.
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RT k ( « « &) The pages of FSM k implement the routing described.

The parenthesis stands for a routing prescription as indicated in section

5.2.5.

Function F in a state can include also commands. Of particular
necessity are commands that control the output production. The following
are given with their notation and interpretation, also with reference to the

routings described in section 5.2.5 (4).

the variable "name" in the functional memory is
transferred to the output buffer.

output {name)

se

output SEG(k) the page segment k is transferred to the output

buffer.
distribution : the content of the distribution is transferred
to the output buffer, and the distribution is
cleared,
record : the present content of the output buffer is recorded.
erase : the present content of the output buffer is erased.
record open ¢ the present and future content of the output buffer

is to be recorded,

record stop " the present content of the output buffer is the

last to be recorded.
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5.2, TRANSITION FUNCTION T

A transition function is composed of'two parts

(1) - a set of‘paths.through the states of the FSM

(2) - a~$et of éonditiqns (sﬁch as values reached by the
variables, signéls ccﬁing from the outside) that
deternmine the choice of one path.

'Moreovér, a transition function can be

(a) - described in the FSM itself
(b} - be imposed by another FSM or be produced by an’

outside control (driven'transitions).

- There is a transition function in each state, and it is performed each time

a page has a cycle in that state, after the data transformation F.
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(1) PATHS IN TRANSITION FUNCTIONS

(a). No prescription of any sort for T function means that the FSM remains
in the present state (until some action from the outside of that FSM occurs).
In the state diagram, this case is represented by the absence of any arrow
emerging from the circle representing that state, Fig. 19(a).

(b). Unconditional transition to the state with the next label (in the
natural numerical order). Note that this is the simplest coded transitionm,
no state labels need to be indicated. The adopted graphical representation
consists of drawing adjacent the circles representing the states, Fig. 19(b).

(c). Unconditional transition to state h. This prescription needs simply
the state label h. Its graphical representation consists of an arrow point-
ing to state h, Fig. 19(c).

(d). Transition to different states depending on conditions, The T func-
tion and the related state labels need to be prescribed. The graphical
representation consists of several oriented arrows emerging from the state,
Fig. 19{(d). Details are given in (2).

(e). Driven transition {produced as a consequence of actions by part of
some other FSM). No prescription is made in this FSM. The graphical
representation consists of a dashed arrow, Fig. 19(e). Similar symbols are
used also to indicate the starting state.

(f). Go to state h and stay there for n cycles (then the tramnsition pre-
scribed in state h will act). The prescription needs a code, the label h
and the value n. The graphical representation consists of an arrow with
open head where the value of n is written, Fig. 19(f).

{g). Stay in the present state for n cycles {then the other prescriptions
will act). The prescription needs a code and the value n, The graphical
representation consists of an arrow looping into the state with the value
of n written inside, Fig. 19(g).

(h). Go to state h stopping over states k, m, . . . (stopover transitiom).
The prescription consists of the multiplicity of state labels in an estab-

lished order. The graphical representation consists of a jagged arrow with
notches pointing to the states where stop is made, Fig. 19(h).

(i). As in h, but staying in the stopover states for assigned numbers of
cycles. The prescription is as in h with added number of cycles. The
graphical representation is as in h, with the number of cycles written in
the notches, Fig. 19(i). Note that if the state where to stop is not
specified, the FSM will remain idle for the specified number of cycles.

(j). Priority is assigned to one or more transition branches. Priority
means that that branch (if chosen by the funetion T) will oceur first, re-
gardless of other conventions. The prescription consists of a code added to
the description of that branch. The graphical representation consists of a
dot superimposed to the arrow representing that branch, Fig. 19(j).
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(k). Lock of page. This feature is used when the page movement is con- _
trolled by function T, rather than following the automatic circulation. The
prescription consists of a code added to the description of the branches for
which the page remains in operation. The graphical representation consists
of a circle added.to those branches, Fig.: 19(k)

© (1).  End of page., This transition produces the disappearing of the page.
It is described as a reserved state label.. It is represented graphically by
a triangle Fig (19 (L),

ERRET SR T

The feature of the priorlty allows ‘the mechanization of a variety of
rules. In reference to st090ver trangitions, when the states connected with
priority tran31tzon are adjacent (in the state-label order), the next destin-
“ation of a stopover tran31tion w1ll ‘be’ reached at the end of the priority
'tran51tlons, as in example 3 of Fig. . When the states commected with
fpriority tran31tion are notjédjacent,'the occurrence of ‘the branch with
A'priority cancels every previous stoppver prescriptlon (ex. 4 of Fig. 19(3))

Tran51t10ns £ and Bs and transition h in the second example given in
Fig 19 (h) produce s1m11&r staying But tnielredundancy is in fact a flex1-
bllity which eases the programing._ In thelcase of tranb1t10n ¥, the prescrip-
tion of staying - is made once and it holds for all the transits through ‘that
state. In the case of tran51tions f the stay can be different for different
errivais to that state. . In the case of transition h, the stay can be dlf-

ferent in accordance w1th events occurring in that state.
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O J

(a)

(b) (c)

Be

(d)

%

5
:

Fig. 19 - Symbols for the transition paths (cont.)
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. Fig. 19 ~ (cont.) :Symbolls for the transition pa-ths.
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(2) CONDITIONS TN THE TRANSITION FUNCTION

The conditions that affect the choice of the path are expressed in convention-

al notations, below a horizontal line. Examples:

the dot indicates the branch

the tests cccur from
top to down, and the
first that is valid
determines the path

B > B'

cont 2

I

taken when the condition is true

Decision

table form -

A
B
C

=Ej111
ovi| 0 1
>41001

2/

the branch from the corner is the
path taken when no one condition
is true (the "else" case)

no indication in the table means don't care

all tests are performed before a branch
is chosen

The set of conditions is pertinent to each implementation of the language.

The folloiring set is adopted here: =, >, <, ovi (overflow) , and

cont 1, cont 2, ... cont k {control signals appearing from ocutside, they

can be indicated also by name).
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RO

UTING R

Va_riables'xi

(1)

(2)

(3)
(4)

(5

to

to

to

to

to

can be routed .

output (to an output buffer storage from which they~wiil‘be
recorded on the indicated peripheral at the prescribed
time); _ |

different places in the page (where they will be found at the

- - next circulatiom); | ' ‘

other bages {where tﬁey will be found at the next circuiétion);

funCtionalimemories (regioﬁs of'the_mémory other than the
circulating pages)§1 

control places. (typically for structuring the Memory).

Moreover, the routing can be

state dependent: 1t occurs every time a page is in that state - in

the state diagram is indicated at the right of a

vertical line;

transition dependent: it occurs only if a given path is chosen'f in

the state diagram is indicated beside the arrow repre-—

senting that path;

driven routing: it occurs when another FSM produces that prescription -

in the state diagram of the driven FSM is indicated in

parentheses.

The routing operations occur after the completion of the work in the pro- .

gramable network; (phyéicaily; they are performed when the page is in the

packer)}.

The details of the routings are pertinent to the implementation of the

language.

In the following, the choices adopted here are described.
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(1) ROUTING TO OUTPUT

- Simple indication of the name of a variable xj means that the indicated
variable disappears (becomes = 0) from the page, and its value is stored
(in queue form, if not otherwise prescribed) into the output buffer.

- Indication of the name of a variable x; underlined means that the variable

is kept in the page, and its value is copied into the output buffer as above.

(2) ROUTING TO DIFFERENT PLACES IN THE PAGE

description notation

(in the form of examples)

- clear variables A, C, D A C D

o o o
~ exchange A with D AZED
- shift all the variable to left, the ¢

last becoming = 0

- tirculate all the wvariables of one (:j:)
position to the left

(3) ROUTING TO OTHER PAGES

— The name of a variable followed in parenthesis by the name of a new variable
and of an FSM means that the routed variable will substitute for the new indi-
cated variable in all the pages of the indicated FSM. Example: A(B,3).
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' (4) ROUTING TO FUNCTIONAL MEMORY

~ Storage. Notations and interpretation as follows.

A (name) : variable A in the page is stored as variable "name"
‘in the functional memory; A in the page remains un-
_ changed. ' ' '
A + (name) : as above, but A in the bage is cleared. ,
A (B) - 1 variablie A in the page is stored in the functional -

memory as a variable with name equal te the content of
B in the page. : :

A+ (B) . : as above, but A in the pagé is cleared.

- Acquisition., Notation and interpretatiqn as follows.

A = (name) : variable A in the page will acquire the gontent*‘qf
' variable "name" in the functional memory.
A < (name) 1 as aboﬁe, but the content of "name" will be cleared.
A= (B) : variable A in the page will acquire* the content of
- : the variable in the functional memory that has name
_ equal to the content of B in the page.
A« (B} : as above, but the varlable in the functional memory
will be cleared. ' P
A read : variable A in the page will acquire* the content of

the variable in the functional memory that has name
equal to the present content of A,

- Exchange. Notations and interpretation-as follows.

A Z (name)-' : variable A in the page'and "name" in the functional
o memory exchange their values. : '

AT (B) : variable A in the page and the variable in the func- N\
tional memory with name equal to the content of B in
“the page exchange their wvalues.

- Accumulation. Notation and interpretation as follows.

A acc (name) : variable A in the page is accumulated to the present
- content of variable '"name" in the functional memory.

A acc (B) ¢ variable A in the page is accumulated to the present
content of the variable in the functional memory with
name equal to the content in B of the page. .

#that content will be found in the page at the next circulation.
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- Distribution., Notation: Lg. Interpretation: variable C in the page is
distributed in a distribution region defined in the functional memory.
A distribution region is a sequence of n words reserved in the functiomal
memory; these words are labeled 0, 1, 2...n-1. When a variable with
value k is distributed, the present value of the distribution word with
label = k is incremented by one; for any value k larger than n-1, the
increment is made in the word labeled n-~1,

- Count. Notation: ¢ (name). Interpretation: an increment of one is made
in the variable "name" in the functional memory,

~ Maximum. Notation: D max (name). Interpretation: the variable "name" in
the functional memory assumes the largest of the values of D and of the
0ld content in “name".

(5) ROUTING TO MEMORY CONTROL

~ Creation of a page. Notation and interpretation:
Pn 'a page 1is introduced into the present memory segment, in state
n of the present FSM.

P (k) a page is introduced in the initial state of FSM k.
P n(k) a page is introduced in state n of FSM k.
-~ Distribution definition. Notation: distrib (n). Interpretation: a se~

quence of n words is reserved in the functional memory as distribution
region.

— Change of page segment. Notation: SEG (k). Interpretation: the circula-
tion of pages transfers to the page segment k. A segment can be also a
distribution sequence.

~ Scanning. Notation: SCAN (code). Interpretation: the circulation of
pages occurs along a segment, across an array of segments, across planes
of segments, etc., according to the "code".
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5.3 AN IMPLEMENTATION OF MACHINE LANGUAGE

5.3.,1 -~ Outline

 Im this section, the machine 1anguage 1mp1emented in the CPL 1 proces—-
‘sor is described This 1mplementation can. be .considered. as a subset of the
" user 1anguage described’ 1n section 5 2. This subset reflects the particular
cont1ngenc1es and scope of the CPL 1 processor as described 1n section 4.4,

' Because of the specific applicatlon for which the CPL 1 processor was
-‘constructed, particular attention was given to keep programs concise and .
51mple, The ‘modeling of the actual work of the machine 1n FSM form made
thlS goal p0531b1e. For economy of peripherals, static card readers were
adopted as an 1nput device, and conventional punch cards were used as a
program medium. However, much high exploitation of the. information capaclty
of the 960 bits of the card was - made, in: comparlson to conventional codings.
‘Preassigned fields were established in ‘the’ card with a ofe-to-—bhe correspon—
dence with the items of the FSMs, states, l F T, and R.n In thlS way, the '
-user can produce the machine programs directly, by looking at the state

'diagram (the user's program) and* writing p1ece—by-piece on the card w1th a

. The feature of using no prescription for the most frequent cholce was .

abundantly used. The binary codes were given a morphology simllar to that

‘-7'of spoken languages, $6° ‘that the user, after a short practice w1th the pro-

cessor, could compose most of the codes himself without looklng in the dic-
tionary. The f1xed-format~on the card made the syntax of the language obvi-
ous and no error prone."with'the development -of the system, hoﬁever, the
fixed format required an acrobatics for fltting into 1t larger amounts of
1nformation,' Although thls feature 1s ‘not relevant to a general context, it
has been of interest for exercislng conciseness in the mapping“(3.5).

| In the particular context “just described, the'connection between user
language and machine 1anguage discussed in section 5.1.1 did not pose pxob-
' lems. The user thinks of one language, that of the FSMs, The development
of programs is carried out by sketching state diagrams. When a prellminary

,test is desired, portions of the state dlagram are pnched directly on a
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card and fed inte the CPL 1 machine., Observation of the results may suggest
some modifications, which are usually written on the same card. During the
development of a program, a card can be used as a small scratch pad. Items
can be added and deleted (all 1s), and new state descriptions can be written,
until space is available in the card and there is a possibility of transfer-
ring to the new fields.

When a program is completed to the user's satisfaction, the updated
state diagram constitutes the documentation of the program in the user lang-
uage, and one or more cards constitute the original for the duplication of
the machine programs.

What seems most significant in this experience, abstracting from the
specific context and environment in which it occurred, is the man-machine
interaction, When developing a program, we discuss the process in terms of
states, transitions, and data structures; we talk to the machine in the same

terms; and we can interpret the raw data of the computer in the same context.

5.3.2 - The format of the card

The words describing a configuration in the programable network consti-
tute the most complex items in the FSM descriptions., Statistically, it was
observed that in typical processes a configuration is used repeatedly in a
single FSM, Therefore it was found advantageous not to write the words WF
in the state descriptions, but to write them only once in a separate field,
labeled "common storage" (Fig. 20). In the state descriptions, words Wp
are referred to by means of the number of the column iq the common storage
where they have been written.

The fields in the card are (Fig. 20): the common storage for fifteen
12-bit words Wf; a column for the name of the FSM; a column for the code
word; and sixteen fields, labeled from O to 15, for the description of six-
teen states. The label of the state is given by the label of the field
where it is written. Each state field is divided in four subfields: the
top one for the input prescription I, the middle left for the calls of words
WF, the bottom one for the transition function T, and the middle right for
the routing prescription R. State 15 is dedicated to the recording functionms,

and has a slightly different format.
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 Fig. 20 - Fields in the program cards of the CPL 1 processor

‘Input prescrlption I, anh of the 4—hit'word5'refers toithe'prescriptlon of

-one url . The top blt indlcates whether ‘the 1nput datum is written in "the -
card or derlved from an outside source.‘ In the. flrst case ‘the following
bits 1nd1cate the mantlssa of a number whose exponent is’ 1n a sectlon of the
code word In the second case, the following bltS select one of eight

sources that are preselected among 6& by. another sectlon ofthe code Word

Data~transformation'F The three 4—b1t words in the callnfor—F field indi-

cate -column numbers in the common storage._ ‘In the common - storage, 12-bit
-Words refer to conflguratlons of the PN with the morphology degceribed in

section_5.3.3-

”Tran51tion funct1on T, The first word prescribes the uariables_that are to

‘be compared in accordance to a coded table.-'The second word'indicates the
'type of comparlson N etc., and whether it is a stopover transition.
The follow1ng two . Words 1nd1cate the states to Whlch transfer in accordance

with the result of the test, When a spec1al code is present in the second-
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word, the first word indicates which outside control signal, or internal

event such as overflow, is involved in the decision,

Routing prescription R. The small word for the routing prescription is aug-

mented by a section of the code word. Routing to the output buffer, with or
without clearing of the variables in the page, is indicated directly. Re-
served codes indicate special routings, such as the transferring to a dis-

tribution funection,

5.3.3 - The Morphology of the words

One of the most interesting issues of the CPL system is the mapping
{3.5) between a symbolic description of data transformations and the codes
given to the programable network for its execution. The peculiarity of this
mapping is that it does not occur through the activity of a compiler that
assembles sequences of instructions from a given instruction set as a conse-
quence of the interpretation of sequences of statements from a formal phrase-
structure language. The mapping occurs through operational networks that are
devised by the user in a symbolic substratum. Because of the isomorphism be-
tween the symbolic and physical substrata, the execution can be obtained by
a physical operational network that has the same objects and the same struc-
ture as the symbolic network devised by the user. In such a situation, the
mapping (3.5) can be accomplished by means of a simple transliteration, if
an appropriate language iz provided to the user and to the decoders of the
machine,

The CPL 1 processor, in spite of its elementarity, has been an inter-
esting benchmark for experimenting with the essential points of this mapping.
By using morphologles and inflections that are familiax because of their use
in spoken languages, it has been possible to develop a direct correspondence
between the bit patterns that control the programable network and the produc-
tions of a language that mean the desired data transfoxrmations te the user.
By taking certain attentioms, it is also posgsible to utilize almost the to-
tality of the available bit patterns. It is possible to give the language
such a structure that it appears to the user an effective means for communi-

cating data transformations.
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Fig. 21 - Morphology of words F in the CPL 1 Processor

' For the 12-bit words that describe configurations of the PN, the mor-
phology represented in Fig. 21 is used. Type (a) is used for mode 1 of sec-.
tion 3.2, 3. The root indicates the type of functlon involved, such as sum—

_ msrion, subtractlon, multlplicarion,'etc, The: preflx prescrlbes,some details
peculier to each function, such as'questions on overflow, sign, circulerify,
etc, The specifier specifies the  arguments that are read for the data trans-
' formatlon that is, it indicates the connectlvity. For unary operatlons, the .
spec1f1er specifies further details in the operatlons. Finally, the: sufflx -
indicates which of the»four varlables x,. are to be transformed

For the individual prescriptions of mode 3 in section 5,2,3, the format-
(b) of Fig, 21 is used. The variable that is transformed is a préferred
varieble and thus it does not need to be indlcated Root and prefix have
the same role as before. The speolfler has the-pettern 111 for'indioating
mode 3 of the PN descrlptlon. ‘The suffix, in this use, refers to details and

connect1v1ty that are peculiar to each type of function.

For the special networks of mode 4, the formar (c) is used ’ A:pattern
0000 .in the suffix (which 1s meanlngless in the other modes) characterizes
this format. ‘The remalnlng part of the word is a coded list of special oper-
ating configurations, The prefix remains available for spec1fy1ng options in

each of these special configurations,-
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5.4 DISCUSSION

It is necessary to state in advance that comparisons between the pro-
graming language described in this report and conventional programing lan-
guages will always present some difficulty. For although in the broad sense of
means of communication both are 'languages", in several respects they per-
tain to different domains. The first produces descriptions of machinés, the
others descriptions of procedures. The first is in a multidimensional form
and refers to a computer based on a programable substratum; the second are
in phrase structure form and refer to computers based on an instruction-
obeying processor and random-access memory. Probably, the actual origin of
this difficulty of comparison can be related to the repeatedly mentiocned
dual symbolic systems of mental processes, imagery and verbal structures.

However, because in both cases the final goal is the same, that of
obtaining a certain result by means of a man-made machine, a discussion on
the correspondences and divergences of the two types of languages should
have meaning. In this sense, some elaborations on certain pragmatic aspects
are made in the first section, and actual or apparent similarities with fea-

tures of other languages are discussed in the following seétion.

5.4.1 Functicnal and technical characteristics

In conventional programing, the user description of the process and the
actual execution of the computer are two different things. The difference
is so fundamental that the user simply ignores what the computer does. How-
ever, what the computer obtains is completely determined (hopefully) by what
the user prescribes. This determinateness is achieved by using a verbal-
structure language very precise in its lexical and syntactical elements.
This method on the one hand gives the user compléte independence of the
mechanics of the computer, and on the other hand constrains him to the rigid-
ity of the grammar of that langusge..

In the CPL system, the machine does precisely what the user prescribes
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(the important point is that it is not the user going to a giuen'mechanics
of the computer, but the computor coming up to the images of the user); Here
~determinateness is échreved by'giving a structural description. A structure,
a construct, appears to have larger latitude than a language of commands and
declarations. The user describes directly "what" the computer should be and
do., 1In this situation, the means for describing the "what" become almost
irrclevant. 'Rather, essential is that user.and computér'work in 5imilar
spaces; this;is made possible by the two isomorphic substrata: the symbolic
one, used as user language, and the physical one, which is the computer.

| From the experiences described in chapter 6, it doES'not'result that

a structural modeling, at the level of the symbolic substratum of chapter 3,
ig more diffieult than a couveutional procedural description.AmAs o_matter
of fact, by pushing the user to vioualize the processes structurally, and
asklng him to produce mental images, we help him to clarify the process and
give him guidellnes for developing a program. T

Because the structures of the user language serve the user during the
modeling of the intended process, and are not given directly to the computer,
a large choice of vocabulary and a great deal of flexibility in lexical and
syntac¢tical characteristics can be accepted. Provision of the lexical rigid—“
ity needed by the computer is postponed to the time of the preparation of
the machine program. Because of the one-to-one correspondance between the
items of the user -and machine languages, the preparation of the machine pro-
gramsé can be obtained, manually or automatically, without the involvement
of processing activities. .

Note that the'usc of relatively free notations does not preclude the
ﬁriting of a precise, complete program in the form that the computer actually
will execute. In conventional programing languages, if we use free notations
(for the purpose of communication among-human beings), it-is difficult to
definc an actual computer progrém. The fact that a user language 1s relieved
from lexical (and possibly’syutacticalj rigidity should be considered appro-
priate, as testified by the growing of default features in compilers.

There are several consequences from the approach taken, that only ex-
tended expérience can fully clarify., Some of particular relevance are dig-

cussed in the following pages.
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Machine independence

In conventional programing, we can distinguish several levels (often not
neatly separated)} each with a different degree of machine independence. At
the so-called reference language level, a program is written unambiguously
in the form of sentences obeying the vocabulary and the syntax of a parti-
cular programing language. At this level, a program is completely machine
independent; it is potentially executable by any computer that has g com-
piler for that language and suitable system software. But, evidently, it
iz not an actual program that can be fed directly into a computer.

At the level of hardware implementations, a program has the same struc-
ture as above, but vocabulary and syntax are restricted to those accepted by
a particular class of computer systems. Within that class of systems, such
programs are complete and machine independent.

At the broad level of assembly languages, programs are expressed more
in terms of features of a particular type of computer than in terms of a
general language. Within that type of comﬁuter, they are actual programs and
machine independent.

At the level of machine language, programs consist of the actual compu-
ter instructions and auxiliary control information. They are usually tailor-
ed to a particular installation. In conclusion, transferability is one ob-
jective of today's programing, but it cannot yet be considered achieved in

a general sense.

In the CPL system, givén the strong connection between user and com-
puter, machine independence has to be viewed differently. Here we do not
constrain ourselves to the automatie translation, but rather we attempt to
optimize simultaneously the work of the user and of the machine,

The purpose of the user language is to produce a formal, rigorous, and
complete description of a process, regardless of the actual machines that
will eventually execute it. To give the user a chance to develop a good,
essential description of the process, we eliminate actual machine constraints
by implying ideal machines. However, these ideal machines have the same
basic structure as the real machines, in order not to make difficult the
later production of actual machine programs. This approach is made fossibla

by using a language of abstract machines rather than a phrase structure

= 160 -



- S 5.4:1

language. -(Note that the high-level languages used today3do.npt‘heve the
structure of the computers used today.) :Thus; in the eense here discussed,
the state diegrams of the user language are ﬁechine indeﬁeﬁdeuf.
_ The machine programs constitute the actual information that is given
a computer, thus they are fully machine dependent. In our,ease, the machine .
programs refer to a particular real substratum. But it is! not the vocabulary
that- is relevant; given the one-to-one correspondence between the .-
elements of these programs and the actual computer actions, it will always
be poseible to-proﬁide an automatic, direct"translation from one voeabulary
ta aﬁother..'what-prOduees the machine dependeney is the variety of the
mapping (3.5)(section.3.2.2,.pege'BO) that we can expect to Be implemented !
-in -computers of this sort. Our approach is baée& on identity ef syntax in
the symbolic and‘physicel SUbstrate,‘bur the mepping (3;5)'hae to be imple-.
ﬁented differently, in different,cases,_forxobrious reasons of cost and
epplication. If'theSe‘mappingg_are‘developed'With a broad view, also with-‘
out overlooking ﬁyschological considerations, we have a strong feeling that
the different mappings can constitute hierarchical subsets of'a‘general'user
language. In this case, a machine program for a CPL system of level k could
be executable by all CPL systems of levels k and above, ,
- Now.we come to thejconnepticns between user and machine languages. " No
' particular attention to this. subject has been needed in the present work.
In the use of the CPL 1 machiﬁeb the state diagrams are sketched initially g
cin a summarized form; then they are redrafted with the actual capabilities-
-~ of the CPL'lrmachiﬁe:in miﬁd. Then;rthe'maehiﬁé'programs are hand prbduced,
by writing the iteﬁs of -the sfate'diagram on punch cards, in terms of the
words of the dictionary (ﬁert_ef the manual of the CPL 1 machine)., “Because
of their meaningful'moreholdgy,Kmost of - these words are mentally com~
pose& when punching the cards, without referehce to therdietionary * When a
program is complex in terms of the capability of the machine- used, a prellm—'
inary, careful check of the implementability of the state'diagram is strong-
ly advisable. When a progrem-is simple; details and variations can success-
Ffully be imprbvised directly in machine language.
In chapter 6, programs are shown at different levels of the user lang—
uage {(state diagrams), and in machine language for the CPL 1 processor,

that is, on punch cards. The user languages ranges from the extended
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implementation of section 5.2 to the subset implemented in the CPL 1
processor. Moreover, for the sake of clarity, programs that were devel-~
oped originally for the CPL 1 machine are also often presented in the user
language of section 5.2

In conclusion, we can depict the situation as follows: A user program
(state diagram or equivalent) is a formal description of a process that can
easily be read and interpreted, It is a complete program. It is executable
by CPL machines above a certain level, and not by other CPL machines. In the
first case, the machine pfograms are obtained by transliteration of the

.graphic and alphanumerical symbols of the state diagram into the corres-
ponding machine words. In the second case, the programs should be re-elabor-
ated before the transliteration can be made.

For a larger context, the following conjectures are offered. User lan-
guages could be developed with lexical and syntactical characteristics as
appropriate for each application, but always isomorphic with a basie, general,
symbolic substratum. Programs written in these languages could be translated
by automatic or manual procedures into the terms of a standard vocabulary and
in a standard FSM form of a desired level k. Each of these user languages
will probably be tramnslated automaticaliy down only to a certain level k.

The productions of these translations could be considered actual machine pro-
grams, for machines of that level, because every nonnaked CPL computer will
have incorporated direct translators from that standard form and vocabulary.

In order to permit the one-to-one correspondence between the elements
of the user and machine programs, it is necessary either for the physical
substratum to have the same features as the symbolic substratum, or for the
symbolic substratum to be limited to the features of the physical substratum,
The first course would be adopted when possible, otherwise the second would
be. The interesting characteristic of this approach is that each machine
language can be viewed as a restricted form of the user language, rather than
as a completely different language. When a derivation is desired between
a program and a CPL machine not isomorphic with the language used in that
program, a sort of compiler could be developed, or human intervention used.
In this case, the work of adaptation should not be impractical because all

machine languages would have the same structure as the programing languages.
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In th1s report the p0551ble connection of a CPL system with present

programlng languages and computers is not analyzed

Data and declaratlons

One of the 51gn1f1cant divergences from conventional computers 1s in the'ff'

treatment of data. In conventlonal computers, data are 1ndividually piled
in a memory, more or less randomly, and are. referenced from and to it by .
means of an address apparatus.. Here data are created in structures by the
operational substratum PN, and _1n a virtual sense, they remain in that form
~w(the pages are virtual replicas of PN) A first consequence is. that here the
' address apparatus is unnecessary. _ o O B
| In a. random—access storage system, the sPecific random locatlons of the
single variables are, obviously, without any interest. Accordingly, 1n
programing 1anguages data are referred to by names, which constitute a much.
‘mote natural reference system.a However this method generates a signiflcant
overhead 1n the work of the computer and often creates unsuspected pitfalls
for the user (such as in_ calling by name or by value) In the CPL system
data are grouped in pages, and the pages are usually not called for, ‘but -are
assoclated in further structures (sequences, arrays matrices, ete. ) so that
data‘emerge‘spontaneously?at the.proper-places and rlght_times. This organ-—
ization is‘madEZWith ease‘directly,by the user because programs;are_deVElQPEd
in the_form¢Of abstract machines,;rather than‘asfsequences:of phrases..'If
_the storage-SubStratum PMnhas-enough flexibility, the user;can mold in it the
images he has of the data structures, L | i _ -
"'The 51mplest kind of structures for us ‘to verbalize and work w1th are
: spatlal in character. It is not surprlsing, therefore, that there are many -
examples of use of n—dlmensional space,”" (Miller 1964, p. 224).-21n;accor—l
dance the-memory is_organized as_n—dimensional structures-rather:than as-an
unstructured deposit. Here the'user "gees" the actual structurehand evolu—
tion of the computer, and we can therefore expect that he will be less _error
prone than When heé is dealing with collections of items 1nd1rectly, through
a verbal language, .. _ . & .
The passing of parameters to a subroutine, procedure, or function here

occurs as an interplay between FSMs and pages. The pages choose portions
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of programs by means of the key word, and the program, in turn, transforms
the pages and their key words. Undoubtedly a large flexibility is available
for constructing complex processes,

One might suspect that a complex interplay of many pages with many FSMs
would generate confusion in the user. In the context of the processes ana-
lyzed in this report, it does not appear to be so. The conjecture is made
that, for large classes of processes, the geometrical intuition that the user
can develop for the structures that he designs in the framework of Fig. 17
is no less effective than the symbolic intuition he can develop for the strue-
tures available in the virtual machines created by the compilers. For the
classes of problems in which a verbal structure is the appropriate model,
such structures can be implemented in the frame of Fig, 17 with no more diffi-
culty as when they are implemented by a compiler in the substratum of conven-
tional computers.

A different approach results also in regard to the declarations. Be-
cause data are not called for but are constructed and manipulated by the oper-
ational substratum, there will be no declarations attached to the data.
Rather, the operational structures have specified how to treat data. This
permits different treatments at different times on the same data, without the
need to introduce new declarations, |

The notion of declaration has undoubtedly a great psychological beauty,
in the sense that one can start by saying "be such and such...”, and all the
necessary context and background comes into being. Unfortumnately, in present
programing languages little of this potential is implemented, and the largest
role of declarations is devoted to mechanical details required in a random
aécess system, In common communication between persons we do not need to
declare those detail for every object; in most cases that informatiom is
dlready implicit in our discourse; only in particular instances we take re-
course to an explicit declaration. In this respect, the declarations of
conventional programing languages are certainly annoying, and undoubtedly
redundant.

In assigning the prescription of data treatments to the operational
structures, rather than.to the data, we have some advantages. When the user
is preparing transformations on certain data, he knows what those data are,

and evidently he does not need to make a declaration to himself. Thus, if
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later he wishes to treat those same data differently, he can do so0- and again'
does not need to insert a mnew declaration. All the problems of valldity and
consistency of declarations in presence of transfers, go to, call, etc., do
' not appear here. Undoubtedly it would be difficult to implement with compi—
lers the flexibility achieved when the user develops directly both the data
and operational structures. When the structure of a process is visible to
the user 1in the.form of an abstract machine, with all the dynamic aspects
made clear by a spatiotemporal frame, the user is in much better p051t10n for
'exploitlng his capablllties in creatlng an efficient program.

It is interestlng to note that here data and program are in one respect
. more separated and in another respect more embedded ‘than in conventional com-
puters. The pages (data) and the FSM descrlptlons (program) follow completely
differeht paths. However, when. theymerge together in the programable network
they become indistinguishable; the structure of the page is part of the opera-

-~ ting structure, and the operations create the structure of the.pages.

Efficiengy -of programs

The efficiency achlevable by hand codlng in conventional computers is

'well .known, but it can rarely be afforded because of the labor required.
The simplifications that can be made_in the progranms when new hardware fea-
‘trues become available are also wel known, but they wouid-require the pur-
chase of a new computer, , | | ' -

' Here, because of the two'iSQmorphiC‘Substrata, we have a machine language
that is at the same level as the user language, thus the user can always make
‘the preper choices for the computer execution. .Mbreover! the operational

substratum allows the implementation of all sort of hardware features.

Ease of enterlqg and modifying a program _ )
Conventional programs are expressed in the form of a 1isting. It is
well known the difficulty of recovering and understanding a process from the

listing for anyone who did not write that program. The reason is that a
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listing is a very unexpressive form of representation for a process, and
requires a great many symbolic steps before it can be reinterpreted. A
confirmation of this fact is the use of comments as an almost indispensable
ingredient of programs.

An abstract machine represented in the form of a state diagram is, on
the contrary, a very expressive object. Its graphic structure easily
evokes the spatial intuition. The symbols embedded in it allow an easy
understanding of the dynamics of the process through anticipation or tem—
poral intuiticn. The modularity in terms of pages and states keeps pro-
grams understandable regardless of their complexity. The hierarchical de~
scription in terms of FSMs, states, networks, and prescriptions allows a
gradual acquisition from an overall picture to the minute details,

For similar reasons, modifications of a program are much simpler when
one deals with a state diagram than with a listing. The modularity of the
states allows an easy development of new parts. The absence of declaratioms
aliminates one common source of trouble. The easy visualization of the
entire process given by the state diagram permits a careful verification of
all consequences produced by each modification,

The interpretation of conventional programs is based on a foreign gram-
mar that needs to be memorized, and thus is prone to errors. A& typical ex-
ample is the extended use of concatenated parentheses in certain programing
languages; parentheses are a very concise, elegant, and effective device for
symbolic representations, but they become inappropriate for mental processes
when extended excessively. A CPL program, instead, is largely based on
visual structures for which we all have a special facility, and which are
less error prone. The modeling in the form of a machine allows the intui-

tive understanding of very complex dynamics.

Interaction with the computer

The drastic difference in the ease of man-machine interaction between
the CPL system and conventional computers should be evident, and little more
needs to be said. The basic reason is that in conventional computers com-
munication occurs through verbal-like messages, such as commands, statements,

and declarations; in the CPL system, the user constructs and sees continuously
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the machine. This approach, compared to conventional programing, can be
paralleled to "doing it yourself" compared to telling some simple—minded
person to do it. 1In the latter case, you have first to‘model into verbal
structures What you had in min¢ ant1c1pat1ng the actioms he can make‘ then,
you have to be sure that your listener interprets correctly your utterances,
for the same result you wanted If you do it yourself instead, you map
pyour images directly into actiona' and this is particularly direct,_because
‘in conceiving your intentions you were anticipating, more or less uncon-
sciously, What you were able. -to do. ,

_ Becauae thlS 1s an unusual'viewp01nt in’ modern computers (while it was
not unfamiliar at the early time of computer development, especially the '
analog ones), another analogy is offered.f In a factory, if people were.
communicating only by telephone in different languages through 1nterpreters,
without blueprints and personal contaots, the work would be still possible,
but more limited and difficult. Each method of communication can suffioe
for transmitting all sorts of information, if suitable means of translation
are provided; but when many different types of information are involved,

eommunication is more efficient if more than one method is used.

Debugging

_ The fact that here the computer assumes the configuration of the model
‘chosen by the user for his problem makes debugging a part of understanding
the problem, rather than an extranecus activity The fact that user and
computer work in two substrata that are 1somorphic eliminates many Qiffi-
culties typical of’ the cases in which user 1anguage and computer actions |
bear no similarity. '

,Diagnostio'fadilitiéSfare“E§§§;fo be implemented_duefto the fact'that:.

data are organized in accordance with_the structure of the problem, and the.
execution proceeds in the modular‘frame of the states. Many of the comments
made in regard to the ease of entering a program apply also to the ease of
debugging. In the CPL system, a direct machine dump produces the variables
xi partitioned in pages and states, Stich a data display is COmpletely mean-—
-ingful for the user, because those variables, pages, and states are the ele-
ments into which the user modeled his process.. No-debugging facilities are

necegsary in the language.
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Flowcharting

Flowcharting started with the "We therefore propose to begin the plan-
ning . . . by . . . the flow diagram . . ." of Goldstine and von Neumann
(1947). The first computer programs were flow diagrams with an accompanying
list of codes. Then computers &eveloped, and today programers do mot use
flowcharts, except as a secondary, simplified documentation coming after the
program has been writtén. Conversely, in programing the CPL system, the
first step is the production of a state diagram, which is related to the
‘early flow diagrams in several respects. '

The reason for all this is very simple. A graphical representation of
the type of a flowchart is the most effective description of the behavior of
a processing machine. At the early times, programers were dealing directly
with the actual actions of the computer; thus flowcharts were the most ef-
fective program representation. Then programers freed themselves from the
actual working of computers and dealt with problems in terms of phrase lan-
guages; in this case, flowcharts are completely useless. Our FSM is again a
machine, and the programer deals directly with it, actually conceives and
constructs it; therefore a type of flowchart becomes again the most effective
program representation. The difference is that in the early times of compu-~
ters, the flowchart was describing the behavior of mechanical or electronic
devices that exhibited no resemblance with tﬁe problem as seen by the user;
here the state diagram describes the behavior of an abstract machine that is
the model of the problem as seen by the user, Once this situation is achieved,
it is not difficult to enrich the flowchart with a variety of features and
notations to make it a very expressive, user-oriented programing language.

The power of expression of a graphical representation is so obvious that
program theorists often were intrigued with it, aside from its use for repre-
senting the actual work of the computer. It has been proposed to use flow-
charts not only as a notation but even as a programing language (Burkhardt
1965); however, it never has been adopted. Galler and Perlis (1%70), in a
general analysis of programing languages, raise the question: '""The clarity
and precision we have achieved in representing algorithms by means of flow-
charts leads one to ask what it is about flowcharts that makes them so much
clearer than the verbal description'. They recognize that it is not the two-

dimensionality of the representation, because any flowchart can be easily
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transformed into a linear sequence, but they do not elaborate further.

In our interpretation, we recognize that the effectiveness of a
graphical representation has a psychological basis. A graphical represen-
tation of an abstract mechanism‘directly evokes the imagery system of our
mental processes. Instead, a sequence of symbols, conveying the same in-
formation, needs first to be memorized in its entirety (and that implies an
effort), then it is analyzed, and finally the mental images start to take
shape. In the case of a program, we can say: when an algorithm is repre-
sented in a list form, what we perceive first as a unit is a single command,
or declaration, and it requires a certain amount of work to reconstruct the
entire mechanism from the many commands. When the algorithm is represented
in state diagfam form, what we perceive first as a unit is the entire mecha-
nism, and we then need little efforp to focus on the single parts in order
to make precise our knowledge of the algorithm.

It is also interesting to see a similarity in the recommended approach
to programing. Here we have two successive phases: first, the delineation
of a strategy, a mechanization, in a relatively free user‘ianguage; second,
the elaboration of actual machine operations. TFor the first Eomputers, we
read that "it is advisable to plan first the course of the process and the
relationship of its successive stages . . . and to extract from this . . .
.the codes . . . as a secondary operation" (Goldstine and von Neumann 1947).
However, when programing is made with a phrase language in which lexical and
syntactical charactéristics are rigid and crucial, such a gradual approach
is not very practicai. The reason for this is that visualization of a pro-
cess in its entirety requires remodeling it in a context that is different‘
from that of the phrase programing language; thus we have to switch alter—
natively between a visual frame, and a verbal frame, and attempt to estab-
lish connections between the two,

Elaborating further on the above comment, we can realize that the state
diagrams of our abstract machines, while having a2 similarity of roles with
the flow diagrams of early computers (the main differences being in the level
of the modeling and in the richness of features), have an intrinsic differ-
ence with the flowcharts of today's programs. This difference comes not
from the different number and types.of boxes, but from a more subtle reason.

Flowcharts are graphical representations of processes already modeled in a
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phrase structure; thus, they can enjoy the fast perception peculiar to graph-
ical representations, as it concerns the overall picture, but they are bounded
to the features of a phrase language for what concerms the process modeling.
Instead, state diagrams are the actual model of the process, made with full
use of the feapures peculiar tc the images of our mental processes (compare
with the game of charades discussed in section 2.1.4). A further difference
is in the fact that flowcharts are a model for the user, but not, typically,
a representation of the actual computer execution; state diagrams are both.

Ironically, Flowcharts are highly recommended in the programing courses,
in recognition of the power of graphical represéntatioﬁs, but professional
progremers find it preferable not to use them. Only seldom, for an intriguing
process, a programer may start with a graphical sketch of the overall struc-
ture of the program, but then, at a certain point, he transfers to phrase
structures. A graphical representation, if carried ocut to the actual details
of a program, becomes too cumbersome, thus useless. If the flowchart is kept
at a level in which it can function as a pancramic image, it does not con-
stitute an actual program. In practice, flowcharts are used only as an
auxiliary, summarizing documentation of programs already developed.

The power of the state diagrams derives from modeling the processes in
the form of automata {(our abstract machines). The inconveniences that arise
in flowcharts are not precsent here, because graphical and verbal means are
used in a collaborative way, and not esach as a different representation of
the other.

Karp and Miller (1967), Slutz (1968), and others have applied flow
diagrams to the analysis of parallel computation. They need te distinguish
data operations and control structures, because they imply conventional com-
puters. Here we imply a computer isomorphic to the programing language, and
it iz possible to deal with only one structure that is representative of

both the data transformations and the control.

APL

Among the programing languages that have been developed, APL (Iverson
1962a) is one that suggests more similarities in structure and goals with
the language here described. However, the similarity is more in‘the
appearance because tﬁe two languages are in different frames.

First of all, more than a language for actually programing computers,

- 170 -



- 5.4,2

APL is-a system of concise.and‘powerful notations_applicable:tp a Variety of -
descriptions and analyses. In particular, it can be used forideScribingra
~ process for a computer if suitable compiler, or 1nterpret1ve routines, are
aVailable‘(Falkoff and. Iverson 1967). APL per se does not provide data struc-—
turing, inpuf and output, which are crucial points in computer use. iWorks
of direct 1mplementations were cited in section 1.3, The language-described
here instead, is a method for actually programing a particular type of. com— '
puter, the CPL system. _ _ '
7 -In APL, the emphasis-is placed.on.conriseness in describing algorithms;
this is inev1tably paid for with .2 compulsory notation system  that is diffi-
cult for the nonexpert, Con51derat10n to computers appears only in the
structure as sequences of statements, clearly motivated by the hope. that
slmnle interpretive routines will be ahle to apply the languages to the dif-
ferent ‘computers. Because these sequences often are very concise and use
arrows for jumps, APLgprograms have some diagrammatlcal appearance thns re-
.sembling structures of FSMs. However, there is complete- absence of the ‘no-
tion of gtate, which is crucial both for V1sualizing the structure of a
.given process, and for gradually constructing a complex program.,,The‘view-l
point is fully that of sequence of statements. _ | o
The point is that APL reaches conciseness. by means of elegant notations
"and not becoming involved in. the executlon. Iverson himself (1962a) says
that the goal actually is to. provide a 1anguage with such. a. descriptive -and .
analytlcal power as to repay the effort requlred for its . mastery. . He shows
(Iverson 1964) the. interesting analytical possibillty of -the- language. In a
sense,‘programing‘a computer is- 1ncidental.' The language described here on
the contrary reaches,conciseness by‘prescribing an execution that is tailored
to the model chosen.by:the user for wvisualizing the process. -The-notation
‘to be used is not of primary relevance for the method. We see that the
scopes of the two languages are in different areas. , "
Iverson talks of common language for hardware, software, and applica—
tions (Iverson l962b). He recognizes the desirability for a programer to
deal With‘a process at a high level, while having the possibility to specify
also details. But what he means is that APL is very effective (concise) for
-describing and analyzing the working of a given piece of hardware, for de-

scribing and manipulating a given plece of software, and for expressing a
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given algorithm. All this is very wvaluable but it is different from the goal
expressed in section 1.1 of merging the three points of Fig. 1. We are not
interested in describing hardware, software, or algorithms per se and
separately. In our approach, hardware, software, and algorithms are all as-
pects of the same structure. In this sense not only does a single language
deseribe them, but it is actually a single description. For APL, there are
three different descriptions for the three aspects. This different situation
is a consequence of the fact that Iverson worked only on the language, accept-
ing the computers as they are. Here the computer also is re-examined and

-changed together with the language.

Decision Tables

For more than ten years (Kavanagh 1960; McDaniel 1970; Low 1973) de-

cision tables have been recognized to be a very effective programing method,
easily understocd by humans regardless of their background, and machine
independent. One item of the FSM description, the function T, has in a
sense the same philosophy of decision tables. Therefore similar advantages
can be expected.

One difference is that conventional decision tables need to be compiled,
in order to be understood by a computer: Here function T is directly imple-
mented by the loose hardware of the CPL system. Another difference is that
common decision tables need some interface with the other general purpese
programing languages. Here function T is one of the constituents of the

language, therefore it is well integrated in all kinds of programs.

CPL

A programing language has been developed in Cambridge, England, from
which the name Cambridge Programing Language (CPL) is derived. This language
is to be used with conventional computers, but has a particular aim to be
efficient alsoe for nonnumerical processes (Barron and Strachey 1966). In
this context, the language is advantageously structured in blocks. However,
it is a phrase structure language. There are similarities of aims anﬂ orien-
tations in the Cambridge language and in the language of this report, however

only the names are identical.
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Chapter 6

Comparison of Programs

The main objective of this work, as described in the previous chapters,
is to providela more direct communication between man and computer by intro-
ducing two corresponding substrata, one symbolic, which has the role of the
programing language, and one physical, which constitutes tHe computer. If the
symbolic substratum is suitable for representing the "images" that the user
conceives for his processes, and the physical substratum is isomorphic to the
symbolic one in such a way as to make those images real, we can expect a
greater facility for making computers do what we want them to do.

The purpose of this chapter is to test to what extent this expectation
can actually be realized. Moreover, we see in practice that each programing
language (and in some degree each type of computer) is more efficent for some
classes of problems and less so for others. If the programing language and
the computer have the greater versatility of substrata where varieties of
"gbstract machines" can be developed that conform to the specific processes,
we may expect also a more uniform efficiency in programing and execution for
the different types of processes. To test also such a possible uniformity,

sample programs for processes of different natures will be considered.

6.1 INTRODUCTION

6.1.1 Available works om program comparison

Comparing computer programs involves two different classes of consider-
ations. On the one hand, programs are computations, and as such they can, in
principle, be approached with mathematical theories of computation and of its

complexity. On the other hand, programs are affected by the technical charac-
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terististics of the specific computers for which they are prepared. These
characteristics do not follow, at present, organized criteria, but rather
they are the consequence of empirical and economical considerations. The in-
creasing relative cost of programing (see for instance Balzer 1973) has pro-
moted numerous studies for increasing the software productivity by means of
tools derived from theoretical considerations, However, at the present time,
nog practical procedures are available for handling simultaneOusly the theo-
retical and the practical aspects of a program.

On the theoretical side, among the studies that can be closely related
to the building of theoretical tools for program comparisons are the works
of Chaitin (1966) on the length of programs for Turing machines, the intri-
guing properties determined by Blum (1967) on the number of steps for compu-
ting functions, and the studies of Meyer and Fisher (1971) on the succinct-
ness of different forms of descriptioms.

On the practical side, only pragmatic considerations can be found, such
as the comparisoﬁs of Schwartz (1965), and the discussions of Shaw (1966).
An attempt to establish a eriterium of measure is in Hellerman (1972). Cru-
cial in any comparison of programs is their rigorousness, and the works of

Dijkstra (1968, 1972) also become pertinent.

6.1.2 - Criteria of comparison

In the absence of any developed criterion for evaluating and comparing
programs, only empirical parameters can be considered and pragmatic charac-
teristics of the programing language evaluated.

Attempts to determine some significant parameters for comparing actual
programs were all nullified by the differences between conventional lang-
uages and the language of the abstract machines. Thus, simple, external
data such as the number of statements, symbols, cards, and memory bytes have
been accounted. When possible, the execution time and the programing time
were also measured, The interpretation of these data is given in the next

section.

In regard to the comparison of pragmatic characteristics of the lang-
uage, a qualitative account is given here, under the titles that usually

appear in the literature,
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Ease of learning. We have here to distinguish two types of users: those who

have not previously been exposed-to coﬁputers, or who have had onlyfsporadic
contact with them; and those who have routinely worked with conventional com~
puters. For the first category, no»difficulty has been encOuntered. It wae
interesting to observe the benefit of therphysiealization of the processes in
the form of abstract machines., For the second category, there is indeed an
.initial phase of changing habits. After this, of course,'there is the bene-

fit of more competence,

Elapsed time for programi_g, Given the'complexity of producing -a reliable

‘measure of the actual time devoted to a program, few measuresappear on the
tables. However, a shorter programing time is one of the most 51gnificant
results of theeeﬁegﬁparlsons. If we compare at the machine language level,
the difference is between one and two orders of magnitude. If we compare

- the time for writing a prograﬁ er the CPL system (machine program) with the
time for writiﬁg'an equivalentlerograﬁ in a high-level conventional language,
there is no Eigﬁificant differeﬁee in general 'But if in the'comparison we
intlude also the time for maklng the program work a great difference appears_

in favor of the CPL system.

Ease of debugglng. In agreement w1th What can e3511y be expected (see page

167), the phase of debugglng for the CPL system is either of negligible im—

portance or very simple to carry out,

Program readability., 'My opinion is that programs with more than a certain

number of steps are absolutely unreedable,-no matter what language they are
writteﬁ in." (Shaw 1966). _This is a common pommentrabout conventional pro-
grams., The experience with the programs written for the CPL system is quite
different, The state diagrams, as.shown in the following sections, do not
lose their clarity with increase of size of the program. Given the ease of
writing programs, pften‘punch cards of the CPL machines would accumulate dis=-
connected from any reference; it was possibie to reconstruct the process by

reconstructing the FSMs even from the punch cards.

Ease of documentation. In conventional languages, a good documentation re-

quires an extra effort on the part of the programer, In the CPL system, the

state diagram, as produeed duriﬁg the development of a program, constitutes
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an objective documentation, that includes all the information that may be

needed in the future for understanding, maintaining and modifying a program,

Ease of maintaining and change. The experience obtained so far with the CPL

system has been all in a context in which extensions and modifications to the
programs were normal events, The facility for documenting the programs, the
readability of the state diagrams, and the ease of debugging discussed above
are all characteristics that permitted the maintenance of programs to be made

without difficulties.

Several hundreds programs of different types and scopes have been written
for the CPL machine during these past years. Although all this material could
not be specifically documented, even in a statistical form, tliese programs con-
stitute the basis upon which the various comments, discussions, and statements
have been made throughout this report. A few sample programs have been selected
for the comparisons, either because of the interest in the processes performed,
or because more documentation was readily available in the corresponding con-
ventional programs, Most of the sample programs are in the context of real-
time processing of weather-radar signals, and they are grouped in section 6.2.
Some of the programs are from the early use of the processor at the Radio
Meteor Project of the Smithsonlan Astrophysical Observatory, and these are
grouped in section 6.3. Section 6.4 shows some exploratory programs developed
in a theoretical context for analysing the effectiveness of the system in dif-
ferent applications,

Acknowledgement is given to the several people who at different times and
places, contributed to the program comparison, either by running the CPL ma-
chine, or by developing CPL programs, or simply by writing corresponding pro-
grams in conventional languages. I am thankful to David Hallenback, Julian
Simms, Steve Tubbs, Robert J. Horn III, Ken Yeager, Hon W. Chin, Jerry

Morrison, and Man Kong Yau.

6.1.3 - Description of the data used in the tables

The data that appear in the tables of comparison in the following sec-—

tions are to be interpreted as follows.
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: 6.1.3 .

Language.' The language in which a program is written, ranging f rom high-level
” languages to machine codes,‘ié referred to in its common name. |
| The name CPL 1'is used for the prdgréms;written in the language of the
CPL 1 pProcessor descrlbed in section 4.4, | ] o

‘The name CPL.2 is used for programs wrltten in a more extended language
that is expected to be implemented in a CPL 2.mach1ne_whose constructlon.has
~ been initiated. This language basically correspondé to the level Qescribed

in section 5.2.°

Statements/Instructions, - These terms have conventional meanlng when they
refer to the conventional programs. 1In the CPL programs, each 1ndependent
expression that appears in the*state diagram 1s counted as omne statement'

'e E., ‘an expression that describes a configuration in F or an expression that

'describes a condition with 1ts related path in- T,

¥ s IEES.

ngols. Each 1ndependent component in an expre531on is counted as one sym-
ol; e.g., a name, a command,_an arithmetic symbol, a slgnificant dellmlter,

" punctuation mark, or blank. - Also in the CPL ianguage'each;graphic delimiter

_h __U"_L

ﬁor.diétinguishing states, F, T, and R is counted -as a symbol. - Moreover,
each word describing a configuration is ac@ouﬁted-for as many symbols as

: qany‘bytes‘are necessary for its storage.

Number of cards. The cards considered are those employed&in each'lﬁnguagéw'
For high-level languages, ﬁsualiy there 1s one card per statement. For ma- .
chine languages, often several instructions are written in the same card.

For the CPL 1 programs, the format of the card is the one described in sec—

tien 5.3.2,

Memory words. This is the number of words of memory that are used for storing

the program. 1f not‘otﬁerwise specified, words of 12 bits are considered.

Execution time, In each case, a portion of processing is chesen such that it

is representative of the total execution time, as well as being suitable of
measurement. In some cases, the fact that the processris executed in actual
.real time is indicated with.r.t. The indication q.r.t. (quasi real time) is
used in cases in which the actual execution occurs after a preliminary storage
pf the data in the memory, but, for'éll'practical purposes, the results ap-

pear as 1f they were obtained in real time.
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6.2 REAL-TIME PROCESSING OF WEATHER-RADAR SIGNALS

Radars have been used for the observation of meteorological events
ever gince World War II. Special radars are now being gradually developed
as specific meteorological instruments. The development of this field can
be traced in the records of the Weather Radar, and Radar Meteorology Confer-
ences of the American Meteorolegical Society (Boston, Mass.).

As eyes constitute a powerful semsor for biological creatures insofar
as they are closely connected to a sophisticated processing system (the brain),
similarly, the degree to which radars applied to meteorology can produce in-
formation of meteorclogical relevance can be thought of as being related to
the processing facility they incorporate. The most extensive experience with
the CPL system has been carried out in this context, from 1970 to date, at
the Massachusetts Institute of Technology. 1Imn this field of application, the
CPL system appears tc be particularly appropriate for the following reasons:

(l) For radar meteorologists, computers are only an auxiliary instru-
ment, and not an object of primary interest. Therefore, a solution is highly
desirable for which the wanted processings can be prepared with the least

effort, and without the need for professional programers.

(2) Weather radars produce a very high réte of data, all of which may
contribute to the information of interest., Therefore, a system that can
process In real time a large quantity of data without a large investment
in equipment -is paramount.

(3) Very little is known about the types of processings appropriate for
extracting the information of interest from the raw radar signals, and years of
study and development are expected. In this situation, for economical rea-
sons, an approach is appropriate that is the least committed to a particular

solution, and that allows for the greatest flexibility and interaction.

In the following sections, samples of the programs that have been devel-
oped in this field are described, and compared with equivalent programs for
other types of computers. The programs were prepared for and run in the
CPL 1 machine; for some of them the more concise versions written for the
CPL 2 machine, or written in the language of section 3.2, are shown. Some pro-
posed programs directly developed in the language of section 5.2 are also

included.
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Tn order to give an idea of the practical advantages that can be derived
from a large availability of real-time processing, a few samples of different
types of results are shown in the following figures.

Fig. 22 shows that inferences about types of precipitation can be
drawn from a characterization of weather echo patterns made on the basis of
some structural characteristics (program described in 6.,2.1). The interest
for such a processing is in having that information at the same time as
observing the eche patterns on the radar screens,

Fig. 23 shows a particular evolution of echo pattern simulated with a
nunerical model, from an initial simple cell. Numerical models of this
type (described in 6.2.10), fed with initial data collected in real time by
the radar, are of possible interest for developing a short-term forecast of
the evolution of the echo patterms, and for inferringlfrom these evolutions
the meteorological events that might occur.

Fig. 24 shows an example of elimination of ground echoes in the data
collection of a weather radar; in this Instance, the echoes from the Monadnock
Mountains (southern N.H.) are canceled in real time during a PPI recording.
In frequent geographical situations, ground echoes strongly disturb the radar
observation and measurements of meteorological events. However, ground
echoes exhibit a spectrum of fluctuations significantly different from that
exhibited by weather echoes, and thus they can be recognized and eliminated
with a suitable processing in real time (program described in 6.2.4).

Fig. 25 shows a measurement of the radar antenna pattern obtained with
the solar noise. For quantitative measurement of precipitation by radar, a
precise knowledge of the radiation pattern of the antenna is required. Mea-
surements of this sort are always delicate and expensive because they re-
quire targets remote from the ground, such as high towers, an airplane, etc.
The sun is available in ewvery part of the world, it is well isclated in' the
sky, and it produces a broad noise spectrum, If anr appropriate processing is
made to enhance the intensity of the noise and to overcome the short-term
variations (program described in 6.2.8), and the distribution on the solar
surface is accounted for, practical measurements of the antenna patterns

can be obtained with simple means.
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6.2.1 Structural characterization of radar-echo patterns

The structure of radar echo patterns, obviously, bears some relation to
the characteristics of the meteorclogical events of which they are the radar
visualization. What would be helpful is the determination of some parameters,
easy to compute on the radar signals, that could reflect, in a global, sta-
tistical, concise form, characteristics of interest,

The program to be described processes in real time the radar output
during the horizomtal antenna rotation, and produces three global parameters
related to the structure of the echo patterns. Echo intemsity xi,j is con-~
sidered in two discrete coordinates, the range i, and the azimuth j. The
raw echoes emerge from the radar In sequences of successive range points i.
These sequences correspond in time to successive azimuths j, due to the rota-
tion of the antenna.

Because of the fluctuation characteristic of weather echoes, the echo
intensity is determined, at each point, as the mean value of the raw echoes
in 32 successive sequences z :

1 z=n+32
X =93 zzn X 4.2 (6.1)
The following global parameters are determined for a given area explored

in the atmosphere.

area of precipitation = ¢ = the number of points i,j at which the

the echo intensity is above a threshold t

L.I.x,
ivi71
mean value = M = —-—'1&-—’-1 X3 >t (6.2)
L.I.ix, .,-x L.o.lx, .-x, .
G =% i 3174, i_l-sil + 1 J‘ i,j "i,3-1 (6.3)

o a

The G parameter can be considered as the mean value of two terms thought of
as a radial and azimuthal computations. The radial computation can be visu-
alized with the aid of Fig. 26. By computing expression (6.1) at all points,
an echo profile A is determined; a replica of it is shifted by one range
point; then the absolute value of the difference between profile A and B is
computed at each point. The sum of these differences for the entire area,

divided by &, is the radial computation. The tangential computation is made
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6:2.1

in a similar way, except that the differences are made between profiles that-

succeed in time, which correspond to adjacent azimuths.’

point 0

point { point n

I
I
I
| -
| profile j

~}—4«—— shift in range
Fig. 26 - Echo profiles versus range

In the following an implementation of this process b§ ﬁart of a CPL
machine is shoﬁn. _ A

This first example is_described in detail, to give the opportunity of
seeing the ianguage of section 5.2 applied to an actual program. In the fol-
lowing ex&mples, the features explained here will be considered familiar,
while each new feature will be described iﬁ detail.

No preliminary storage of data is made. Rather an organizétion of pages
is chosen such that data are processed directly as they arrive. The circula-
tion of the pages is made synchronous with the periodicity of the radar, and
a sequence of pages is allocated in correspondence to the range interval of
interest, Thus the computations at all the n range points can proceed
simultanecusly in the corresbonding pages.,

Then,'én abstract machinenis devised composed of four FSMs (Fig. 27).
FSMs 1, 2, and 4 are implemented by one page each, and FSM 3 is implemented by
the sequence of n pages corresponding to the n range points. FSM 1 first
creates the organization of the pages, and then controls their work; FSM 2
provides the echo intensity at the initial point (0 in Fig. 26); FSM 3 des-

cribes the computation at all subsequent points of the profile; and FSM 4
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6,2.1

provides for the preparation of the global parameters.

Description of FSM 1 (control)

For starting the program, a page is introduced into the system (solid
arrow) in FSM 1, state 1. Here, variable A increments by one at each cycle
(function F). After the first cycle, the condition A = 1 (transition func-
tion T) is walid, thus the page remains in PN (ecircle on the arrow), and
creates a page iﬁ FSM 2 (routing function). Then for n consecutive cycles,
the condition A < nt+2 is valid, and n pages in FSM 3 are created. At the
subsequent cycle, the third condition is valid, and one page in FSM 4 is
created. At the next cycle, no condition is wvalid and the page transfers to
state 2, this time leaving the circulation of all pages free (no circle in
the arrow).

The transition to state 2 has a notch with the number 31; this means
that the page will remain idle for 31 circulations, before reaching state 2
(transition i in Fig. 21). 1In state 2, the page produces a driven transition
to state 2 for all the pages in FSM 2 and FSM 3. Subsequently, the page goes
to state 3, after 31 idle circulations. The reason for this state is to dis-
regard the first tangential computation, which would refer to an initial all-
zero profile; this is obtained by avoiding the driven transition to FSM 4,

In state 3, the page produces a driven transition to state 2 for all pages
of all FSMs, with a periodicity of 32 circulations (31 idle circulations plus
one in state 3). At the same time, auxiliary variables x' are cleared. This
continues until an outside control signal END appears; at which occurrence,

the page transfers to state 4.

In state 4, the page produces a driven transition to state 3 for all
pages, acguires auxiliary data such as azimuth, elevation, the threshold t
used, and messages, routes these data to the output buffer, orders a record
(or a printout) of the entire content of the output buffer, and then the page

disappears (triangle).

Description of FSM 2 (initial point)

As a consequence of the driven transitions produced by F5M 1, this page
accumulates 32 video samples s into variable A (state 1), divides this accumu-
lation by 32 (state 2) and transfers the obtained value (the mean echo in-

tensity at that point) into variable B' (in the auxiliary page array {').
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6.2.1

Variable A assumes the value of the present sample, in state 2; for starting
a new accumulation. FSM 2 simply computes expression (6.1) at the initial
point of the profile. ' '

Description of FSM 3 (boints of the profile)

Accumulation of 32 samples is provided as in FSM 2. But here, in state

'2; the mean echo intemnsity x obtained in A is copied into variables B, C,

1,3
and D (second expression). Then variable B is shifted one position along the
pages, through interchange with B' (third expression).

Now, C and D contain the local eche intensity X ; B contains, as said,

i,3’°

X.;l 5 the 1nten31ty at the point adjacent in range; and E contains Xy 4= i,-
the intensity previously determined (as it can easily be traced from the -
sequence of expressions and cycles) which belong to the adjacent azimuth.
With the fourth expression, we produce in C and E the absolute value of the

_differences between C and B, end E and D, respectively Thus C and E now
contain the terms under the summations in expression (6.3).

The fifth expression accumilates into the aux111ary varlables C' E',

Vand D° the above values in C and E, and the present L 4 which is still in D.
Finally, if the present inten51ty (varlable D) is larger than a threshold t,

an 1ncrement of one is routed to the outside variable 6(o). This is for com

puting the area of precipitation.

. The reason for making such a parallel computation (which may appear more
intriguing than a conventional serial algorithm) is to obtain the entire com-
putetion in real time, for all the adjacent -points, without losing any single

radar echo..

Description of FSM 4 (glebal perameters)

'Every time the pages in FSM 3 send contributions into C', D', and E',
this page accumulates those contributions inteo its variables C, D, and E
(state 2). At the end of the process, the page transfers to state 3, where
the area of precipitation is acquired into A (first expression); C takes the
mean ﬁalue of the radial (in €) and azimuthal (in E) computations (second ex-
pression); and finally, this mean and the integral echo intensity in D are
divided by A (thirdﬂexpressicn). The obtained pafameters, area of precipita-
tion in A, G parameter in C, and mean wvalue in D, are routed to the output.

Then the page disappears.
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6.2.1

Figure 27 represents the program in the user language of section 5.2,
Such a program is also the machine program for a CPL system as implied in
this report. To make the program executable by the CPL 1 machine, which has
only four variables x and not all the features in the language here used,
the computation has to be distributed in a larger number of states. The
actual program is contained in two punch cards (Fig. 30). Results obtained
with this program were shown in Fig. 22. Programs producing the same process
have been written in FORTRAN and PL-1. However, a program has not yet
been devised that can make standard computers do this process in real time.
Fig. 28 shows the listing of one FORTRAN program, and Fig. 29 the flowchart
of one PL-1 program.

In reference to the issues discussed in sections 2.1 and 2.2, we can
say that Fig. 28 is a verbal representation of a process modeled in verbal
form; Fig. 29 is an image representation of a process modeled in verbal form;
and Fig. 27 is a symbolic representation (a mixture of words and graphics) of
a process modeled in abstract machine (imagery) form.

The results of the comparison are in Table 2, expressed with the conven-

tions described in section 6.1.3.

T A B L E 2 prograr 5410
number number number memory execution | programing
language staiZm./ sy;:;ls c;?;s words peilgzgm. time
instruc.
CPL 2 35 261 rt
CPL 1 86 390 2 160 Tt
FORTRAN 42 406 42
PL-1 49 273

I for definitions and criteria see section 6.1.3
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Fig. 27 - State diagram for a CPL 2 machine

‘ ] LOGICAL. &7 .

| e—NIELE R SUMLLO0) s SR ST THRESaGLO L1000
 DIMENSION NORO{100V2ISKIFT{991.I0LDI99)

e FOUIVALENCE (SUMIZ) W ISHIETLII) s LOLD420 101

K =2 .FALSE,
i R = 0
! N =@
. SLe 0. A
w5 DO S0 I = 1+100
L) SUMLI)=HO

DO 60 J = 1.28 .
e BEAD L .END=A 0 NRRD
© DD-B5 T = 1.100
—5 SUMIIL = NPROLLLrSUMELI
T s0 CONTINUE |
— e IF (KL THEN GO T e
SUMII) = SumM{1) /32 ‘
—— o IF {SUMLLP LGV THRES) —THEN NN e
‘ DO 65 1 = 1.99
e L ISHIFT 8102 ISHIFT T 232
_ SR = JABS{ISHIFTC(I) = SUM(I}) SR
e lOLDI 2 ISHIRTAID : ‘
] IFCISHEFTLLY oGTa THRES ) THEN NN+l
65 .CONTINUE
' oLDflY = SUM(])
K = LTRUE.-

60 TO &5 . .
¥ SuM_{)1).=_SyMi{11/32

IF (SUM{13.GT. THREST THEM N=Ne]
DO 75 1.=_1.9%

FSHIFT(I) = ISWIFT(IF/32 T
amemno . SR % TABSCISHEIFTIIY = SUM{IID #SRiwmn o

8T = JABS(ISHIFT{l} = JOLDC(II)+ST
e 1QLDLIY = ISHIFTOIY. . o e o
o IFCISHIFTLY}) GT. THRES ! THEN M=N+}
e TS ... LOMTINUE o
: OLDI)}) = SUMi])
e, GO T G5 — - v : e
ao RADIAL = S8/N
TANGE = ST/N
5TOP
— END
Fig. 28 - TFORTRAN listing

Fig. 29 -~ PL-1 flowchart

- 187 -




6.2.1

e e T S e R R ey
S | I T | 1 LU B\N
5¢14 (D i K i
FHETHICIL et e St b i dt e b i
mmmn' EARIARRIEANE (RRN (RRNIINRR B IE! IRRRIRARIIERY (1 |
ERRRRRERERAS 1 4 AR B Bz 2o e 2efe 2 dafz 2 22 YD HEREF RN F

BB TENH L 73 3)3(03 313 Mafs[ms 3 K 131133133:3’"3
AR T] gnaIn LA in g & a5 4 dfala 2 salE:
STRISSSREsH ’SLIMISE SHAIN13E 42 £ s 2ufs)s § sfp|s 5 ls]i i s
SEMGHS A5 aMs S HRSE[uRS 6 ML S E|:[65 2 mat: BESR[S LS S EE SERfS
AR A SARERREIG 113 LIRE (e {ied | M [ERA (R | ”ll T 1
JSLSHSEONE Ao SEQP A6 2p ofi o] 6 EORAp Mg slsapsla Ry afs R BRNNS oz a 3 5)NE 3

[ R & RERN 1 EM | u}u\msw apofiake : J
r COMMON S‘:‘D‘l‘u‘ﬁ‘: ni: Q 1 G T ] -] Il’) 11 2 13 g (Y

IR T \
54 114 1 R0

IR .aggﬂtgazﬂﬁzﬂizazuﬂ.aa;a.ﬂ.ﬁw'."°'=ﬂgafjeggfzaazaﬂz?;',&.';949.9..&55'.9:;.
[EARRI U TIRET] IEERIUNRE RN RN (RN (RARI (AR AN RN EERE RN (RARI BN AR

i IRET PRRTE SRRl cE TR E R EC AT A EY R zzzzzz??l?zlzzlzzllizzz L

; PRRER IR A1 1 A B R EER: TR IR MR B F R ELERR R KR

A DR Gk R4 ek ¢ e daube 2 [ERIG: FEET ORE YR T EEE LR
SHESSESESENNE S sis[sis s sfsfs 5 5|5[s 5 SI5(BS S|S EAEs [ Bsfs(®5 58 505 5 53 i 8 st S[5|Ws 5[5 553 5 5
ToNoROMeaclsscass|ilceolsso|e]s s Hele s oo 6 WIS 6 op6 ¢ 61 s & 235 (s ﬂssa sedlifs sz se
T RRAA TR LR RAc Iy LA g LA | AR AL A LA WS B[Rl B RSl | (HEN ;
ToeBenaneaRERs R ale ol s s e op i My el Wp WEAP B B 5 I8 836 8% &0 B{2 S| :‘a Ineg) ¢

quqn“’lllll!{i.':@&qw_aaf;-ziasqti-i ﬂﬂﬂ?ﬁﬂ_ﬂ‘:? 1 114 ! i ] 111 R !

: . |

Fig. 30

Program 5414 in Fig.

The program for the CPL 1 machine

30 produces the same process as

Fig. 27, except that it starts and ends at each passing of

through north, for a prescryibed number of

measurements for an entire exploration of

rotation, say, for half an hour; and then

made.
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times.

That is,

the program in
the antenna

it repeats the

360 degrees every other antenna

it prints all the measurements



6.2.2

6.2.2 Distribution of preciﬁigationxintenSity  .

In the usual model for the measurement of precipitafionsoy means of
radar, the mean echo intensity,-eorrected at each point to take accountrof
several factors, is related to the rainfall intensity (Battan 1959; Austin
and Geotis 1971), From an operational viewpoint, all questions on this re—
lation that applyiuniformly to all data osn advantageously be postponed to
the subsequent stage of data anelysiS' while all corrections that are specif-
ic for each point and _period need to be made in real time. Among the latter,
the following can be mentioned: geometrical diffusion of electromagnetic ‘
waves with distance§ exclusion of nonweather‘eehoes, such as ground echoes;
attennation encountered'hj'the electromagnetic waves becsuse‘of'the precipi¥
tation itself differences in drop—size distribution that may occur in dif-
ferent regions and dlfferent periods.

_Experimental programs toward the above task are here_described..lThe |
Basic‘operation'consists of‘integrating indeoendently at eech point the
fluctuating. radar echo, making the'related corrections and counting the
occurrences of each resulting value during an entire antenna rotatlon. The
operation should be repeated continuously, or at periodic 1ntervals of time,

Ground - echoes exhibit a much_restricted spectrum of fluctuation than’
weather echoes do. Characteristic of weather ecnoes are fluctuation fre—
quencies of the same order of radar repetition frequencies, and a eonstanﬁ
standard deviation (Marshall and Hitschfeld 1953). Taking advantage of the
above-chafacte:istics, it has been found expefinentally effective to discrim-
inate the echoes in base of tne value reached By the following parameters:

N . o ) |
L heerceron g @l 6

==

B =

where Pi is the . echo power at point i, T the radar pulse-repetition pariod,

N a number of consecutive raw echoes, and the bars denote absolute value of
the difference. Weather radars, typically, produce output signals already in
logarithnic'scale. Parameter B can be computed at each point in the Same
time in which the raw echoes are integrated for produc1ng the echo 1nten51ty,
and then compared with a threshold for de01d1ng whether the echo should be

" disregarded or not. A program for echo intemnsity distribution, with rejec-
tion of ground echoes based on this method, iz shown in fig. 31 in_diffefent

versions of the CPL language.
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6.2.2

In the upper part of the figure, the program is shown in the language
of section 5.2, and it is used for describing the process, referring to the
previous example for the details. A first page performs FSM(a) that, in
state 1, waits for the antenna to point to north, then configurates a piece
of memory into a distribution of 16 storages, and, in state 2, creates all
the other pages; in state 3, it controls the synchronous behavior of the
other pages, and, at the next passage of the antenna through north (in state
4) produces the ocutput results. A sequence of pages that corresponds to the
array of points in range performs FSM(b). In state 5, variable A produces
the absolute value of the difference between consecutive samples, B accumu-
lates these differences, and ¢ accumulates the straight values of the suc-
cessive echoes. After 32 such cycles, the pages transfer to state 6, where
the accumulation in € is divided to form the mean value; A takes the present
sample necessary for the next cycle in state 5; and transition-related rout-
ings are performed as follows. If C is below a threshold h {which means no
echo is considered to be present), B and C are cleared, and no routing is
made. If C > h, but B is below a threshold k (which means that the echo was
not from a fluctuating weather target), B and C are cleared, and a 1 is added
to a quantity named ''rejected”. If both B and C are above the thresholds, a
1 1s added to a quantity named "area', C is accumulated into a quantity named
T, and alsc distributed in the memory section created by FSM{a) at the exit
from state 1.

In the middle part of Fig. 31, the program is adapted to the CPL 1 ma-
chine; some states are added, and some different allocations of wvariables are
made. The starting of the FSMs from states 0 and 8 is for using an existing
supervisor that initiates FSMs in those states every minute. The lower part
of Fig. 31 shows the program in machine language; all the items constituting
the state diagram can fit into one punch card, Comparison with equivalent
programs written in various programing languages gives the data summarized
in Table 3.

In this program no account was taken of geometrical considerations. If
a large span of range is involved, each point should be weighed proportional~
ly to the range, because an e¢lement in polar coordinates has an area that
increases with the radius. This can be accomplished by multiplying the mea-
Surament at a range Ri by the factor Ri/Ro » being RO the range at which
the factor is assumed to be equal one. This in the hypothesis of antenna

beam always filled.
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T A B L E 3 prograr 5420 /1
number number number memory execution | programing
of of of time
language statem./ | symbols cards words per segm. time
instruc,
CPL 2 26 122 1 rt
CPL 1 40 193 1 74 rt

for definitions and criteria see section. 6.1.3

The correction because of the geometrical diffusion of electromagnetic
waves is usually made by adding a coefficent that increases with range to
logarithmic signals. More interesting is the correction of the attenuation
due to the precipitation itself. This is an integral function of the rain
intensity encountered along the range. But the rain intensity can be related
to the reflectivity factor Z measured by the radar; therefore, the specific
attenuation Y can be expressed in the form vy = k Zh + 1n the case of loga-
rithmic signals, a discrete algorithm for the attenuation correction can be

as follows:

X, =n_ + c; Fig. 32

tati f th
C;+1 - C; + qxr Computation of the
attenuation correction

where m  is the measurement at range r, C' an auxiliary variable for the
attenuation correction, q a constant, and Xr the corrected reflectivity
factor. This algorithm can be implemented by an additional state (Fig. 32)
to be inserted in FSM b of the previous program (Fig. 31). Variable C in
the consecutive pages énmputes first m and then X; the auxiliary variable C'

computes the term C' in the above expression.
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6.2.3 A compounded program.

To give an example of.the‘flexibility that is‘avéilable when struétur—.
ing the programs in FSM form,‘we show how to compose a new program from
parts of others. ' '

Program 5410 (section 6.2.1) produces the interesting parameter G that
can be well related to the type of precipitation. But in fact, we are most
"interested in knowing,ﬁhen and where G exceeds a certain value. Pfogram |
5420 (section 6.2.2) discriminates the-nonweather echoes; we Wduld like to
have this feature also in the measurement of G. The intensity distribution

‘of program 5420 is also information that we_would.like always available.

- To implement'tﬁe above desires, we compose program 5430 represented in

“Fig. 33. An FSM 3 has statés 1 and 2 énalogoﬁs to those of FSM(b) of pro—
gram 5420 for measuring the mean value of the echoes and discriminating the
nonweather echoes. Then state ‘3, gimilar to state 2 of FSM. 3 in program

- 5410, is added for measuring the G parametgr.r-An increment of one in A'
is added in this state, for computing a local precipitation area. A further
state 4 is necessary for the case of nonweather echo. '

FSM 4 has states 1 and 2_analogou§ to states 1 and 2 of FSM &4 in pro-
gram 5410, But here a local G is coﬁputed immediately in state 3, and if it
exceeds a value m, the azimuth, elevation, and'range are read (state 4) and
'all the data are sent to ﬁﬁe output.

_ FSM 2 is similar to FSM 2 in ﬁrogram 5410, except that if includes the
algorithm for nonweather echo rejection. The control is performed by FSM 1,
which is a compound of the FSMs 1 and (a) in programs 5410 and 5420, respec-—
tively. _ | ' '

This program has been édépted to the CPL 1 maéhine, and its coded form
is shown in the two punch cards of Fig. 34.

A real-time printout obtained with this program is showﬁ in Fig. 35.
Each line above the flag 7777 indiéates a region where G was larger than a
given value; the four numbers in these lines are from left to right: azimuth,
area, mean intensiﬁy, and G. The line above and one below the flag contain
auxiliary data. The last four lines contain tﬁe sixteen values of the ‘

intensity distribution.

The comparison with programs written in different languages is in

Table 4. -
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FSM | FSM 2 FSM 3 FSM 4

!

Az= o
distrib (16)
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A< n+2 Al-|s
C>h}|
fA=n+2 Bkl 45 BC ¥ as
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= gux. data
distrib. 5430 !
record

Fig. 33 - State dlagram compounded from different programs

T A B L E 4 program 5430 / 1
number number number memory | execution | programing
laneuage of of of time
guag statem./ | symbgls cards words per segm. time
instruc. ¥
CPL 2 64 322 rt
. CPL 1 75 353 2 142 rt

for definitions and criteria see sectiomn 6.1.3
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6.2.4 Recording of weather echoes

This example is interesting for showing the flexibility that is avail-
able for interfacing with the environment.

" We want the radar echo measured with an integration of 64 samples, with
exclusion of ground echoes, for the entire range, every degree of the antenna
rotation, regardless of its velocity. The measurements should form a record
every degree, with azimuth, elevationm, and initial range first, and then the
echo at the successive range points, packed in twe measurements for each

12-bit word.

The structure of the program, as usual for this type of processing,
consists of an FSM(a) for the control, and an FSM(b), implemented by a page
per range point, for the measurements (Fig. 36).

FSM(a), in state 1, reads the present azimuth, increments it by h (the
equivalent of one degree), then waits idle for 63 circulations and goes to
state 2. Here a driven transition to state 6 is produced, and a record is -
activated with azimuth, elevation, and range as first data. After two idle
circulations, in state 3, a driven transition holds the other pages in state
4 until the present azimuth has increased by one degree; then, the same
routine repeats until a stop signal appears (transition in state 2}.

FSM(b), in state 5, performs the algorith described in the program of
section 6.2.2 for measuring the mean echo value and at the same time providing
a parameter for discriminating the ground echoes. 'In state 6, this parameter
is tested against a threshold t, and, if it is smaller than t, the measure~
ment in C is cleared by routing. With the algorithm of state 7, the pages
transfer ever& other to state 8 or 9. For the pages which transfer to state
8, the measurement is shifted half a word to the left and sent to the auxil-
iary wvariable C'. For the pages which transfer to state 9, the content iﬁ
C' is added to the present content in C and rcouted to the output, thus im-
plementing the‘packing of two measurements in one word.

A family of programs of'this type has been used for a variety of ex-
periments. An example was shown in Fig. 24, For the CPL machine, these pro-
grams are contained in one punch card. The comparison with equivalent pro~

grams in other languages is in Table 5.
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FSM (a}

FSM (b)

6.2.4.

ﬂpfogram 5226

Fig. 36‘ - State diagram 0f~th¢ progrém for the CPL 1 machine

5226

- 68

T A B L E ‘_5‘ ., program
number number | number |}. memory | execution | programing
langua of . o of - of time '
ranguage statem./ | symbols cards words per segm. time
instruec. '
" CPL 1 27 120 Tt

I for definitions and criteria see

section 6.1.3
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6.2.5 Measurement of statistical characteristics of weather echoes

A program is here shown as an example of the variety of processes that
can easily be conceived for amalyzing the characteristics of weather echoes
(see also Schaffner 1972 c).

We saw in the last three examples the usefulness of parameter B. There
is an interest in its relation to the rate of crossing the mean echo value,
of which there are analyses available (Fleisher 1953). Also, its possible
dependency on the echo intensity needs to be explored.

For this purpose we may wish, for all the points of an entire region of
precipitation, the echo intemsity, the B value, and the crossing rate, In
order to measure the rate of crossing of the mean value, the latter has to
be measured first; to be aware of possible changes that may occur in the echo
intensity, we measure it a second time, at the end of the other measurements.

Such measurements are provided in the following program.

After having described the previous programs in the user language of
section 5.2, this program will be described directly in the restricted lan-
guage of the CPL 1 machine. As usual, there is an FSM(a) for control (Fig.
37), and an FSM(b) implemented by a sequence of pages for the measurements.

The control FSM determines four phases of processing by means of driven
transition to states 1, 6, and 7, in states 10, 11, and 12, respectively.

The duration of these phases is determined in state 13 by the overflow of D
which accumulates the content that has been previously set in B,

In the first phase, all the measuring pages accumulate 128 video samples
sam (state 0); this accumulation, after division 128 (state 1), constitutes
the preliminary mean echo value, located in §ariable A, against which the
crossing will be tested.

In the second phase, the pages run through states 2, 3, 4, and 5 for
measuring the parameter B and for counting the crossings., In each of these
states, the difference is made in B between the previous sample and the
present sample; this difference is accumulated in D; and then the present
sample is stored in B for the next cycle. Moreover, following the tests in
these states, we can observe that if the sample has been previocusly less than
A (the reference mean), the page stays in state 2; if the sample has been
previcusly larger than A, the page stays in state 3; but every time the present
sample crosses the value of A, the page goes for one cycle either to state 4

or to state 5, where, furthermore, a one 1s added into variable C. This
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6.2.5

phase lasts for 512 radar periods. 1In this FSM we see an example of the use
of the states for memorizing past events,

In the third phase, 128 video samples are accumulated in B (state 6) in
order to produce the post mean. In the last phase, the four measurements are
packed into two words and routed to the output {(state 8)..

This program, when expressed in the codes for the CPL 1 machine, is con-~
tained in one punch card, as shown on the lower part of Fig. 37. The state
fields in the card bear the same label as in the state diagram, and the items
in the card can be easily interpreted in terms of the items in the state dia-
gram (see section 5.3).

The comparison with equivalent programs written in different languages
is in Table 6.

The crossing rate can be related to turbulence in the atmosphere. Thus,
this or similar programs can be used also for data collection. Fig. 38 shows
a printout of an RHI (range altitude representation) across a storm on August
14, 1972. For each point there are two values (expressed with numbers and
letters in their normal sequence); the left value indicates the echo intensi-
ty, and the right value indicates the crossing rate, When the echo intensity
is below a certain value, the crossing rate is not shown because it pertains

mainly to the noise fluctuatioms.

T A B L E 6 progran 5241
number number number -memary execﬁtion programing
1 of of of time '
anguage statem./ | symbols cards words. per segm, time
instruc.
CPL 1 47 181 i 80 rt

for definitions and criteria see section 6.1.3
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6.2.6 Measurement of the dispersion of short means

An experimental determination of the dispersion of echo-intensity mea-
surements obtained by averaging a few samples is interesting in two ways.
First, it gives a knowledge of the actual confidence that can be assigned to
the intensity measurements for different types of meteorological events.
Second, it gives information about the decorrelation time of the echoes at a
point; information that can be related to the movement of the scatterers in-
the atmosphere. A practical organization of this type of measurement is
described below.

We first want a precise measurement of the actual mean value, say by
using 1000 samples. Then we want several measurements (say m measurements)
with a few samples (say n samples). Furthermore, we would like these few
samples taken at different time distances; say, k radar periods are skipped
between samples. TFinally, because the actual intensity might have varied
during the pericd of the measurements, we want another precise measurement
made again with 1000 samples. We would like all the data printed out, with
the short measurements already arranged in a distribution.

The above is a conceptuallf very simple process, But it is of the type
whose procedural description is awkward when recited in sentences. An ab-
stract machine can represent more concisely the entire task. If, moreover,
this abstract machine can be used directly as an actual program, the entire
work of rhe experimenter is simple.indeed.

An abstract machine that naturally derives from the above description is
represented in Fig. 39. It is one FSM performed by one page; the samples s,
and the parameters m, n, and k are treated as input data. In state 1, vari-
‘able A accumulates the samples, and the page "stays" 1000 times in this state.
Then A is divided by 1000 and routed to the output (state 2); this is the
first precise mean. At the exit of this state, a reservation for a 32-cell
distribution is routed. Then, in state 3, variable A accumulates samples,
while B increments by one. If no radar periods should be skipped (k = 0),
the page remains in state 3; otherwise it goes to state 4 for the number of
circulations to be skipped as indicated by k. Every time the samples accumu-
lated are n, the page transfers to state 5, where the mean value is obtained
by division and routed to the distribution fumction. Variable D is incre-

mented by one, and then the measurement is repeated, returning to state 3.
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6.2.6

When m measurements are executed (test in state 5), the page stoﬁs over
state 1 again (the "stay" prescription holds the page in state 1 for 1000
circulations), then stops over state 2, where the new precise mean is routed
to the output, and finally transfers to statet6. Here the paraméters n,'ﬁ,
k, and possibly other auxiliary data are read and routed to the output; the
content of the distribution is added to the output buffer; an output record
is ordeted; and then the page disappears. '

This program, when adapted to the CPL 1 machine, has minor variatioms,
and it is still contained on one punch card, jhe comparison with equiva-

lent programs in other languages is in Table 7.

distrib. {32}
' ,
3
ABZ sl
B=n
k>0
2 4
At ~ ¢ +1
D +1 LA-
B BD=m C=k Co
a
1
]
6
X=nkm
disteib [ X
record
program (040
Fig. 3% - Program for the dispersion of short means

- 203 -



6.2.6

T A B L E 7

program 1040 / 1

nunmber number number memory execution jprograming

language of of of time

guag statem./ | symbols cards words per segm. time

instruc.

CepL 2 23 102 1 Tt

CPL 1 28 130 1 52 rt

FORTRAN 36 302 36

for definitions and criteria see section 6.1.3

It is interesting to note that the high-level-language FORTIRAN program

is less concise and less problem oriented than the machine-language CPL pro-

gram.

Fig. 39 b
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Flowchart of the corresponding FORTRAN program

Fig. 39b shows the connections among routines of the FORTRAN program,
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6.2.7 Real time data handling

Certain types of processes are so related to environmental COnfingehcies
that high-level programing languages are hardly applicable, and programs are
in fact ﬁrepared in wmachine language. In the case of the CPL system, there
is no real difference bétweén the user and the machine languages, in the
sense that the user language allows complete control of the exeéutiqn, and
_the machine language has almost the conciseness of a uéer 1ahguage; A simple
case is here described. )

A measure of interest is in coﬁparing precipitation intensities deduced
from radar data with actual precipitatiqns.measured at the ground. For this
purpOse'weﬁant measurements of the radar echo intensity at an arréy of 5 x5
points, 1 mile apart, in a region near Concord, Massachusetts, where a net~
work of rain gauges is 10cated. The meésurements should occur automatically
during the rotation of the radar antenna, and a printout with related auxii-~
iary. data shoﬁld be produced at eacﬁ'paésage of the antenna through the Concord -
region. . | ' " _ ‘ -‘ | i

Given the small area, azimuth and-rangé can be taken with good approxi-
mation as coordinates 6f the gridfpoiﬁts; At each point, a numBer n of con-
secutive echoes is integrated. These results are multiplied by a constant
- and another constant is subtracted, in order to express the measurements in
the desired unit. Then these numbers are printed in the form of a 5 x5
matrix, along with the date, time, nuﬁbgr of samples, and coefficients used.
This program has been written in machine Ianguage.for two systems: the CPL 1
machine directly connected to the environmenf, and for a system composed of a-
PDP 8/1 minicomputer and special units for the comnnection with the enﬁiron—
ment, | - _ ' .

The state diagram of the CPL prograﬁ is given in Fig. 40, One page per-
forms the control FSM (a), and five pagés located at the_ﬁrqper range segment
perform FSM (b). At the initial azimuth a_ (test in state 8), a driven trans-
ition brings the five pages to state 1, and then to state 2, where the accumu-
lation of the samples is made. After 100 circulations, a driven tramsition
brings the ﬁages-to state 4, where the coefficient ny is subtracted and the
result transferred to variable B; then the division by n, is performed in
state 6. If at the start of the new measurement the division is not finished,

it continues in state 3, together with the accumulation of new samples in A.
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After the first measurement, the transfer to state 4 1s substituted by the

transfer to state 5, where the measurement obtained in C is routed to the

output.

After five measurements (test in state 11), the parameters n

and elevation are sent to the output and the printout is started.

gram is contained in one punch card.

1! nz’

The pro-

Ninety 12-bit words are needed in the

memory, including supervisory imstructions.

Of the program for the PDP 8/1, the comnection of the routines is shown

in the flowchart of Fig. 41.

The routines are not described here.

The total

program occupies 2 K of 12-bit words. Data of comparison between the two
programs are given in Table 8.
T 4 B L E 8 program 1202
number number number menory execution jprograming
language of of of time
guag statem./ | symbols cards words per segm. time
instruc.
CPL 2 36 144 1
C?PL 1 38 1 90 Tt
FORTRAN
machine lan,
840 500 2000 Tt
(PDP 8/1) 4 1

for definitions and criteria see section 6.1.3
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FSM (a) FSM (b}

program 1202

The complete prbgram for the CPL 1 machine

¥
* SKIPPED
2
L

Fig. 40 -

PRINT
PHELIMINARY
HFY

TIME
FHTEGRATOR [~
TTY subpul TAKE
: L1-1]
SeMFLES

CNIR |
T — TE00

FLaGw

PRINT Su5
MATR X

PRINT TIME
AND DATE

Fig. 41 - The flow between routines in the conventional program
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6.2.8 Measurement of the antenna pattern with solar noise

As mentioned at the beginning of section 6.2, the solar noise offers an
interesting solution te the need of antenna calibration. Among the advantages
of the sun as a socurce are Dptimum position in the sky, regular and known move-
ment, absence of frequency and interferences problems, no cost. Among the dis-
advantages are very low signal intensity, fluctuations of different types (e.g.,
solar flares), angular extension (about 0.5 degree). With sufficient inte-
gration, the weakness of the signal ceases to be a problem. By repeating the
measurements, the momentary fluctuations can be recognized. The effect of
the extension of the emitting regiom of the sun can be separated by reverse
convolution with the prcofile of the noise intensity that is normally published
for each day. The gain of the antenna can be computed from the geometry of the
antenna pattern, regardless of the absolute value of the received signal. The
system response to the small signal variations is deduced by using the same
procedure for a source of noise with calibrated attenuator.

The program here described produces a two-dimensional antenna pattern by
giving the antenna a small vertical scanning across the horizontal trajectory
of the sun at around noon. Numbers n, and n,, indicating the lower and upper
elevations of the segment of interest in the antenna scamnning, are established
and set as input data. The total number of points desired is set as input
datum ng. An input value n, is experimentally chosen for properly position-
ing the zero in the present noise intensity. The entire radar range is filled
with pages implementing FSM (b), Fig. 42, and one page implements FSM (a) for
controlling the measurement.

The measuring pages, in state 10, accumulate in A all the noise samples
that can be'considered independent in the range interval occupied by the
page, say four samples. This accumulation is made with free overflow, thus
the number of samples that can be accumulated is unlimited. In state 11, the
value n, is added, and the result is accumulated into the corresponding vari-
able A" in ', Variable A is cleared, and the pages go to the waiting state
9.

The control page waits in state 1 or state 2 until the antenna is in the
prescribed interwval of elevation. Then state 3 produces a driven transition
to state 10, 1In state 4, which occurs at midpoint of the integration in the

measuring pages, the present elevation and time are routed to the output.
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In state 5, A‘ is cleared, and a driven transition to state 11 is produced. "
In state 6, the present content of A" is acquired and fou;ed to the output,
variﬁbie C is incremeﬁted'by.one,_and the routine repeats itself.

When the antenna is outaide the prescribed intervai of élevation, the .
control page rests in either state 1 or 2, and the measuring pages in_stafe
9. When the pre5cribéd numbef=of measurements is reached, transition to
~ state 7‘dccurs, auxiliary data are routed, and a record is produced. If a
record is desired at any anticipated moment, a signal STOf is activated, and
when the control pageistops over staté 8, transfer to'staté 7,occuré immedi-~
‘ately, with the consequent production of a record. ‘ _ | -

Thé'oﬁtput consists of triplets: an eievation, a time (from which an
azimuth can be derived, given the known ﬁovemgnt of theJSun), and an intens-
ity. From these tr‘:l;pléts. the antenné ‘pattern can."be conétructed. ‘Fig. 25

shows an example.

p'rogram IT-IO

FsM (b)

Fig., 42 -

Program for antenna pattern measurement
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Comparison with equivalent programs written in different programing

languages is in Table 9.

T A B L E program 1710
number number number memofy execution | programing
1 o ~of of of time
anguag statem./ | symbols cards words per segm. time
instruc.
CPL 2 25 112 1
CPL 1 31 128 1 76

l for definitions and criteria see section 6.1.3
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6.2.9 R. A. D. A, R,
This acronym stands for Radar Data Acquisition and Registration system,

and refers to a software system under preparation at the_Politeéniéo di
Milano, Italy, for a weather radar to be used in connection with the satel-
lite Sirio experiments (Cantarella ef al 1971). The task of this system is
briefly described, and then an implementation for a CPL system is shown.

In these experiments, the radar scans the volume of the atmosphere in-
volved in the path between the satellite and a ground station. At each revo-
lution of the radar antenna, a frame of.data ghould be analyzed, and if at
some points of the frame a weather target is found, the frame should be re-
corded on a magnetic tape. A frame of data is constituted of adjacent "rows"

 between two assigned azimuths a. and 52; A "row" is constituted By 1024

adjacent range points, 75 m apait, in each one of which 128 consecutive echoes
are integrated and corrected with a ramnge normalization cbefficient . If

in any row of a frame at least h points show intensity above a threshold t,
tﬁatrframe should be recorded. If ecﬁoes continue to be present, the record-
ing of all the frames should continue; if the echoes cease, the recording
should stop after one further frame without echoes. If echoes appear again,
the récording should resume. At the end of each frame (also if no measure-
ments are recorded),.a record'should be produced with auxiliary data such as
date, time, elevation, and messages. After m frames, regardless of whether
echoes were present, the process should end.

An implementation'of this process with a CPL machine is shown in the
state diagram of Fig. 43. 4n FSM (a) is implemented by one control page, and
an FSM (b) by the 1024 pages'at the range points. In FSM (b), the pages flow
.through the'100plof states 10, 11 (or 12), 13, 14, (15), and again 10. In
-state 13, the accumulation of the samﬁles occurs, and in state 14 the mean
value is obtained and normalized. If a page produces a measurement above
the fhreshold t, it transits through state 15, where variable A' in ' 1s
incremented by one. when recording is underway, all pages tramsit through
state 12, where the meaéuremgnt is routed to the output.

The contrel page, in state 1, produces.the sequence of measuring pages,
in the usual manner, and in state 2 waits for the initial azimuth before-
transferring to state 3. In state 3{ the auxiliary data are routed to the

output; then the loop of states 4, 5 and 6 follows. The driven transition

- 211 -



6.2.9

to state 11 brings the other pages to initiate the integration, and the
driven tramsition to state 14, after 128 circulations, brings the pages to
complete the measurements. If more than h points with echo are found in

Al (state'6), the control page follows the loop of states 5, 6, and 7. 1In
state 7, the auxiliary variable B' is set to the value 2. As a consequence
of being B' > 0, the control page will transit through states 7 or 8 for the
remainder of the frame; this means that all the measuring pages will route to
the output (because of the driven transition to state 12). At the end of the
frame (azimuth larger than ass tested in state 5), a record is produced, and
B' becomes one (state 9). In this condition, the following frame will still
be recorded also if no echoes are present. After one frame without echoes,
B’ becomes zero, and the recording ceases. At each frame, variable C is in-
cremented by one (state 9); and when C is equal to m, the process ends, after

the production of the last record (state 9).

FSM f{a)}
[}
A+t b 10 FSM ‘b)
>1024
2
A = az
A= g,
8
5T |2
X = gux D
e 128 v
ST 2
ST B - g
128
28
! ST 14
A: oz
A> a0z
<) e
% A‘_Al
A > h
8' >
& - program R.A.D.A.R.
Fig. 43 - Program for automatic data collection
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" The data of this program that are suitable for comparison of size and

complexity are reported in Table 10.

‘T A BLE 10

 R.A.D.ALR.

program
number ‘number - number memory | execution. |programing
1an ' of of of _ time
guage - statem./ | symbols cards words per segm. time
instruc. { . . : N
CPL 2 36 1 rt

113

for definitions and criteria see section ' 6.1.3
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6.2.10 Real-time numerical models

An observer of weather radar displays is naturally led to perform two
types of mental process: (1) to interpret the patterns visible in the dis-
plays in terms of what might be the invisible (for the observer) physical
patterns in the atmosphere; and (2) to anticipate mentally the future evolu~
tion of those patterns in terms of the patterns visible on the displays.

In the interest of effectiveness and precision, we attempt here to
parallel these mental processes with computer processes. Some examples of
processes of type (1) can be seen in the programs previously described. Now
we show a preliminary example of type (2). The interest for a short-term
forecast of radar echo patterns is both for predicting the area where pre-
cipitation will occur, and for anticipating the possible occurrence of severe
events,

Note that the real interest is in the patterns in the atmosphere, but,
because the observer (radar plus human) has access only to the radar echo
patterns, any model on the evolution of the atmospheric patterns has te be
based on radar data, in addition to general information available from other
sources., In this situation one might be involved not in modeling the phen-
omena that occcur in the atmosphere, but in searching for semi-empirieal
models of the evolution of the echo patterns per se. To give simple examples:
if there is a constant wind, the echo patterns will have a2 linear translatiomg
if there is alsoc growth and dissipation, the echo patterns will have an ap-
parent movement that is the result of several effects; if there is a continu-
ous supply of moisture, scattered cells will diffuse in one solid pattern;
if dry air is succeeding, the present pattern will dissipate with a certain
time behavior.

Clearly, there are two phases: (a) the establishment of lows of time
evolution for the patterns; (b) the establishment of the conditicons that
select one or more of these evoluticns. Phase (b) can be tackled in terms of
processings of type (1) above, in terms of processings for determining the
past movement and evolution of the echo patterns (Schaffner 1972d), and in
terms of general information available from other sources. Phase (a) can be
approached with numerical models of the type used for the dynamics of fluids.
A preliminary example of such models is described in this section. 7

In the context of the evolution of weather-radar echo patterns, we call

- 214 ~



6.2.10

xi the echo intensity at point i in the coordinate g (for simplicity of
descriptlon, only one dimension is oonsidered' a two—dimen51ona1 model is
shown in section 6. 4 1),_and we assume the follow1ng components for the dy~:.
pamic behavior. '_
Translation. A time varying translation of an X, dlscrete pattern -can be
modeled by the term T in expression (6.5). Function f, (t) has only ‘the values-f
1 or G; the ratio of occurrence of these values determines the veloc1ty of ‘

the movement; the 51gn at. the 1ncrement of 1 determines the direction of the

L movement.

: Linear‘g;owth or dissipetion. Such a behavioral component can be represented

by the term L 1n expression (6.5). TFunction f (t) is 51mp1y a coefflclent
iwhose value may vary in time. The" operator g is a test that disables this
. term whenever x, is below a given threshold (the noise value) and above a

i
‘certain value (the maximum echo 1ntensity that is realistic)

: fExpgnential;gprth or diss1pation. A discrete approx1mation of a term of
-:the form. ekx is represented.by the term E in expression (6.5). fE is a co-

: effic1ent whose value (very small) may vary in time, The operator g has
Lfthe same function as preV1ously indicated. 7
: Liffusion. From the conventional expression of the heat diffusion.

. VA '
-L%%g— k 2—% = G, the finite difference approximation represented by term D
. 8x : | ‘

i in'expression (6.5) is derived. - This term provides a very versatile control.-

- Funetion f (t) is a coeff1c1ent that varies in time. When it is negative,

“different degrees of diffu51on can be obtained. When it 'is positive, and
sufficieutly small to keep the system in stabllity, at least for a certain

' time, -a sort of concentration is produced, and at every variation of the
first: derlvative of x, a new peak grows. Coeffic1ents h(t) ‘and k{(t) assume
only. integer values, and norma]ly ‘are equal to- one; when they are not equal,
asymmetric diffueion is produced; if they have large values, new distant cells
ate prodvoed and if they keep large valuee for a certain time, waves can be

generated from 2 single initial cell,

T ' L " E

B 1 . T U By L re ren 4 re peylD ' ‘ -
%y Ep(0) [xg4y = %51 + 85 (0) 4 EEp (0% + (6.5)

1 e ) 1 n ]
i h(t) T 514k ()

D

+ £ () [x] -
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Expression (€.5) can be computed at each point cof the radar range by an
abstract machine with the state diasgram of Fig. 44. 1In this program, at
first, an echo intensity is determined at each point from the actual radar
echees, These measurements are then used as initial values cof the ®; in
expression (6.5). Subsequently, the iteraticms proceed, with the fi values
manipulated by the operator on switches -- this is cnly phase (a) as pre-
viously defined. The profile generated by the present X, values is made
vieible in an analog display, and the iteration frequency can be varied in
order to slow down the evoluticn, and also freeze a particular stage in
time, Different types of evolutions can be produced and then compared with
the actual echo patterns detected by the radar at later times,

After the previous examples, the state diagram of Fig. 44 should need
only a minimum of verbal description. F¥FSM 1, the control, commands the in-
itial data acquisition by means of states 1 and 2. In state 3, a command
of the operator gives the go shead for the rumning of the numerical model.
State 4 starts the execution of the terms. State 5 commands the execution
of term T; this state is transitted t/100 of the iterations, thus the par-
ameter m allows the operator to control the speed of the movement in hun-
dredths. State 6 is a waiting state for Eontrolling the frequency of the
iterations through the parameter t. FSM 2 and FSM 4 produce the boundary

values in the segment of X, In FSM 3, state 5 shifts the x, ., and state

i-h
14K State 7 implements the D term, while the two tests Iim-

6 shifts the x
plement the operator { . State 8 implements terms E and L.

This program has been adapted for the CPL 1 machine, and it is con-
tained on two punch cards. An exercise with this program was previously
shown in Fig. 23 as breaking waves obtained by an initial single cell.

Comparison with equivalent programs written in different programing
languages is given in Table 11.

Section 6.2.3 described how toc compound a program from several dif-
ferent ones. Chapter 5 discussed how complex programs are developed as an
interplay of FSMs and pages. One can think of assembling a compounded pro-
gram that (a) determines continuously in real-time certain characterizations
of the present echo patterns continuously detected by the radar, (b) reads
certain coefficients set by the operator on the basis of general infeormation,
and (¢) produces continuously on suitable displays a set of future echo’

patterns in accordance with different hypotheses.
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St

FSM 2

prograom 6010

O
¢S
NG
o

MM

Fig. 44 - State diagram of a real-time numerical model

T A B L E

11 prograr 6010
number number number memery execution | programing -
£ of of time :
1 o
anguage statem./ | symbols cards words per segm. time
instruc, '
CPL 2 54 208
CPL 1 71 2 152
for definitions and criteria see section 6.1.3
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6.2.11 Computation of the Fast Fourier Transform

Doppler weather radars have the potential for measuring wind velocity
and turbulence in the atmosphere (see Atlas 1964), 1In these measurements,
an independent Fourier transform is required at each point explored by the
radar. To avoid a prohibitive recording and playback systems, with the
consequent delay in gathering the information, all these Fourier transforms
should be executed in real time. Indeed, such an application is a good
bench test for the processing power of a computer. In the following, a
program that performs such a task is described for a CPL system*, using a
fast Fourier transform.

A sequence of time samples fn (n=1, 2, ... N) admits a discrete
Fourier transform composed of N frequency samples Fk given by

F, = LEI £ W W= R (6.6)

n=1
Such a transform requires the computation of N2 complex terms. The fast
Fourier transform (FFT) is a class of algorithms that obtains the transform
(6.6) with drastically reduced need of computation by taking advantage of
certain regularities in the transform itself (Gold et al 1969). In the FFT,
computation is essentially reduced to the basic complex operation (called
butterfly from its structure), with P, Q, and W complex quantities,
P (i+l) = P(i) + Q (1)W°

(6.7)
Q (i+l) = (1) - Q (L)W’

performed repeatedly on a specifie pattern of data. Such patterns are best
shown in the form of data flow graphs, one example of which is in Fig., 45.
for é transform of 16 points. A property of the pattern of Fig. 45 is that
each pair of new terms can substitute orderly ("in place") the old terms
from which they are computed, The pattern has also a typical shuffling of
the resulting fequency samples. Patterns are possible in which also the
final frequency samples are in the natural order. The number of terms to be
computed in the FFT (involving complex multiplication and complex addition)

is N-log(N). Because these computations are all in pairs that use common

*This program has been derived from the report "Study of the Applicability
of the CPL System to Doppler Radar Signal Processing'' (CS 11-73) prepared
for the National Center for Atmospheric Research, Boulder, Colorado.
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terms, and each pair can be computed simultaneously (butterfly), the number
of actual operation cycles is 1/2.8- log(N) _

By comparing the structure of expression (Gfl) with that of exnfession
(3.2) at page 79, and by interpreting the data flow of Fig., 45 as a periodi-
cal rearranéement of page flow, it can easily be deduced that the FFIiis a
natural computation for a CPL system. Moreover, because the number.cf pages
does not affect the complexity of the FSMs, independent FFTs can Be 31mu1— '
taneously performed at adjacent p01 ts in range. ‘

The class of FFT for radar time sequences, repeated 1ndependently at
dlfferent range points, can be implemented by a CPL machine as follows,

The memory is partitioned in channels, one for each time sample; in each of
these channels, the range sequence of samples (belonging to a given time

~ sample) are stored. Each computing page is composed with the data from two
channels; the choice of these'cnannels in the course of the ccmputatinn de-
pends on the chosen’FFT algorithm, The data of‘the page after each compu-
tation cycle snbétitute for the old data in the same channele,, In this way,

‘ Fig. 45 - Data flow in a FFT algorithm
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the minimal storage capacity is used, which is N complex words for executing
an FFT of N points, For a given memory capacity of the CPL processor, dif-
ferent choices of points in range and of points in time can be chosen rhrough
programing. If M is the total number of complex words in the memory, N the
points in time, and R the points in range, assuming that all are binary
numbers, the choices are given by N x R = M.

These pages implement an FSM that describes the computation of ex-
pression (6.7). Another FSM, implemented by a separate page, computes the
coefficients W in expression (6.7). An additicnal FSM, implemented by still
another page, controls the entire process, in particular the selection of
the channels for the data pages. The details of these FSMs depend on the
particular form of the FFT adopted. As an example, here, an FFT with deci-
mation in time, scrambled output, data in place (corresponding to Fig. 45)

is considered. The state diagram for the FS5Ms is shown in Fig. 46.

FSM 1 (control)

In state 1, n circulations elapse for the acquisition of the time samples.
In state 2, a driven transition to state 2 for all pages is produced, and
A,B,C,D are used for producing the particular pattern of numbers that con-
stitute the liabels of the‘data channels. There Is a periodicity of
decreasing duration in state 3 {(corresponding to the periodicities visible
in Fig. 45), and in states 2 and 4 these numbers are replaced. At each
cycle, this page routes two channel labels to the contrel of the memory.

At each passage through state 4, a driven transition to state 3 is directed
to F5M 2. At the end of log(N) series of computations, the page transfers
to state 5; here a driven transition to state 3 is directed to FSM 3 for
the output production, and, in state 6, bit-reversed numbers (function
available in hardware) are routed as channel labels. After the output of
the N series of frequency samples, the process ends. ' Of course, different
arrangements for the output can be prescribed; for instance, the output can

be simultanecus with a new input acgquisitionm.

FSM 2 (coefficients)

The complex coefficients Ww® are stored in C'D', where they are read by the
computing pages. The starting value (0, 2T/N) is produced in state 2; the
series of the following wvalues are produced in state 3 (the sine and cosine

functions are available as look-up tables).
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FSM 3 (butterfly computation)

This FSM is implemented by one page per point in range. In state 1;‘the
input conmplex samﬁleg (re, im) are acquired to form the content A B of the
successive pages.- In state 2, the complex numbers (4,B) and (C,D),‘frqm the
‘channels prescribed by FSM 1, are opérated-upon’as in expressibh‘(6.7).r The
coefficients W- are in C'D','and the butterfly oﬁeration is available as a
speciai function of type 4 (section 5.2.3).  In state 3; the gbmplex fre-

‘quency samples (A,B)‘are normalized and routed to the output.

FSM 3

S 7 2qil
As?
BCD=pA0y
BC+1
A<
1
BC chan
BC 5 | )
chan 3 ST 3(3) ) ‘ AB:r
BCD+i ¥ ' B
A chan
C=n
= A
2 3
BC chan{ A
BC B rev A
chon 4 e
ST3 (2} \. »
BD=Co B chon
CIA
BC+1
7
BC chon _ .
X = aux :
X FFT 1
ST O al :
Fig. 46 - An abstract machine for performing the fast Fourier transform

‘simultaneocusly in a sequence of points
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The data of this program that are relevant to the comparison of size

and complexity are reported in Table 12,

T A B L E 12 program FFT 1
number number number memory | execution | programing
languape of of of time
guag statem./ | symbols cards words per segm. time
instruc.
CPL 2 4k 209 rt

J for definitions and criteria see section 6.1.3
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6.3 REAL-TIME PROCESSING OF METEOR-RADAR SIGNALS

The first use of a CPL processor was in connection with a radar station
for the study of the ionized trails produced by meteors in the high atmo-
sphere, at the Smithsonian Astrophysical Observatory (see section 4.4.1).

In this context, a variety of programs for pattern recognition, statistics,
and measurements were developed. A few samples of them are reported here as

a further illustration of the programing language.

6.3.1 - Recognition and recording of faint meteors

The purpose of this program is to recognize faint meteors {echo typi-
cally below the noise) and produce periodically on magnetic tape tri-dimen-—
sional matrices of the detected meteors (echo energy, echo duratiom, and
range). Fig. 47 shows a sample of printout from a recorded tape showing
time and data as heading, a row of auxiliary data, and the number of detec-—
ted meteors versus energy (horizontally) and duration (vertically) for a
particular range segment and time interval. '

The meteors of interest produce a narrow echo that rises in intensity
in the first few pulses and then decays exponentially. Tonospheric echoes
of a different pattern, and all sorts of interferences should be rejected
ag much as possible, Fig. 48 éhows one among the several abstract machines
that were devised at that time for accomplishing this task, The cireulation
of the CPL system is synchronized with the pulse emission of the radar, and
a sequence of pages (one per width of the expected echo) performs the FSM
described by states 0 through 6. Twenty consecutive samples (sam) of the
radar video are integrated and called emergy (En). In order to start this
integration approximately at the beginning of the echo, a tentative accumu-
lation (Ac) of five samples is continuously made and compared with a thres-
held (tl, in state 1). If the accumulation is less than the threshold, the
cycle starts new in state 0j if larger, a count (Cn) is increased by one
(state 2). 1If four consecutive accumulations are above the threshold, the
process transfers to state 3 which, in conjunction with state 4, determines
the duration in intervals of 20 pulses. For each sequence of 20 samples
that exceeds a threshold t2, the energy is increased by a number h such

as to produce the shift of one row in the output matrix. Every time the
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accumulation of 20 samples does not exceed the threshold, or the last row of
the matrix is reached (E >), transfer is made to state 5 which normalizes the
energy and routes it to the distribution. If at any time an echo is recog-
nized also at the adjacent range (notified through the signal S in state 3),
the echo is disregarded by means of a priority transition to state 6, where
the echo is tracked until it completely disappears for 128 pulses,

Simultanecusly another page performs the FSM of states 7, 8 and 9 for
producing statistical measurements of the noise by accumulating in C one
thousand samples, and in D the times in which the noise exceeds a value e,
These measurements are made available to the record FSM through Qﬁ. The re-
cord FSM (state 10), as soon as initiated, acgquires the several parameters
and measurements involved in the process, produces a record, and disappears
{triangle attached to the state).

Another page executes an algorithm (state 12) for testing continuously
the computation of interest and produces a diagnostic output (state 13) every
time a computation 1s incorrect. Another page reads information set on
switches by the operator (state 1l1) and at the command B gives it to the out-
put. State 13 is used by both the last FSMs through stopover transitions.

The program described in Fig, 48 in the user language, when translated
into the machine codes, for the CPL 1 processor, is contained on two punch
cards, Apnother card is necessary for the supervisor program which schedules
the process in time and range.

This process has been written also in PL1, Fortran, and assembler lang-
uage for the 370/155 of the Information Processing Center at M.I.T. The flow
chart of Fig., 49 shows the algorithms applied to the vectors in which the
data of the problem are organized. Table 13 summarizes data on the different
programs. The program of Fig. 48, in its original version indicated as CPL 1,
was written debugged and put in operation in a single night during a week of
continuous recording of faint meteors at the Smithsonian radar station. The
PL1 version was accomplished in several days.

The FSMs described in Fig, 48 pfovide the complete processing, including
data acquisition and recording on the output tape. In the flowchart of
Fig. 49, the operations of data acquisition are excluded; the routines invol-
ved in the production of output records are not indicated. In Table 13, sepa-

rate account is given for the algorithms alomne, and the entire process inclu-
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Fig. 47 ~ A record on the magnetic tape
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sive of irput and output operations.

For each program, the input data are

supposed to be recorded on magnetic tape, in the format recommended for each

of the languages used.

In the evaluation of the number of symbols in the source programs, one

symbol has been accounted for each name, constant, arithmetic symbol, and

punctuation mark (ineluding significant blanks).

For the program of Fig. 48,

its equivalent version in the form of strings of symbols has been used; but,

in this case, each item is accounted for a number of symbels equal to the num-—

ber of bytes necessary for its expression,.

The optimizing compiler optimizes execution time at the expense of com-

pilation time and memory size.

the conventional computer.

The execution time is average in the case of

TABLE 13 - Data related to the program for faint meteors.
Bource progranm obleect program
execution
algorithms alone | complete process |algorithms alone complete process tiz:r
Language
guag number number | number | number |Inumber | memory |number | number | memory radar pulse
of of of of of bytes of of bytes ( y
statem. symbols | statem, | cards instr. ¥ instr. cards ¥ us
PL/1 93 662 150 199 § | 338 * | 1352 * 1162 * | 139 % | 4588 % 264 *
171 A 684 A 690 A| 106 A | 2682 A 68 A
*
6928 /
5038 A;
FORTRAN IV 73 698 116 116 223 886 427 55 1678 46
4538
ASSEMBLER 138 1029 434 437 138 560 704 45 1738 22
4116 V/
CPL 1 69 265 137 3 69 320 137 3 480 6.66
1046 v
CPL 2 48 186 116 2 48 160 116 2 320 <1
886
* compiler PL/1 (F). A PL/1 Optimizing Compiler, IBM, 1972,

Y including also data storage for a segment of 50 range elements.

§ for complex and label statements, more than ane card were used to ease reading and debugging.
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For this process, a more through comparison has been made among the
equivalent programs in different languages, and the occasion is taken for
some discussion.

The fact that 690 instructions are needed by the computer, compared with
the number of sentences that are necessary for describing the procéss shows
the distance between point A and C in Fig. 1. The need for 150 statements in
PL/1, compared with the 690 machine instructions, shows the well-known power
of a high~level language (point B in Fig. 1). The 690 instructions produced
by the optimizing compiler, in respect to the ?04 produced manually at the
assembler level, show the achievable effectiveness of an automatic compila-
tion. The 1162 instructions of the compiler F téstify to the difficulties
involved in the compilation process.

The 137 statements of the CPL 1 or the 116 of the CPL 2 show that the
approach of the abstract machines has a power not inferior to a high-level
language, at least for the process here analyzed. The one to one correspon-
dence between statements for the abstract machines and codes for the CPL
system shows that a unique representation of the process for the user and
the machine is feasible.

The fact that the CPL processor used is a rudimental and limited machine
of this type is of little account in our discussion. In this language, the
length of the words tends to increase with the logarithm of the number of
options in the hardware, On the other hand, the complexity of the prablem
models decreases with these options., The syntactic structure of the FSMs
does not change with the size or complexity of the system. Thus an increase
of complexity of the computer does not imply an increase of complexity of
the programs. In this respect, the comparison of the CPL 1 and CPL 2 pro-
grams is relevant; the two machines are the same size, but the CPL 2 exploits
. to a larger extent the features of the hardware and of the corresponding
language.

This approach implies‘that we can generate as many functions as we like
and express them with a specific word, as long as we are able to conceive a
network that produces that functlon. In other words, the flexibility achie-
ved in conventional programing by designing routines here is obtained also
by designing operating structures. Or course, sequéntiality can always he
used, either because it is inherent in the function at hand, or because of

1imitations in the actual PN available,
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The often claimed man-machine interaction needs a careful interpretation.
The machine does the 690 commands (in outr example); the interaction is with a
ghost machine, that of the 150 statements; therefore we are limited to the
capability of the available translation means. An interaction by means of a
common modeling, like that of Fig. 48, is more honest and thus has more chance
to be effective. The factors that make programs so concise can be viewed as
follows: (1) modeling the problem in the form of an FSM leads to a very con-
cise description of the problem; (2) describing the functions of the problem
in the form of operating networks, and using highly inflected words for de~
scribing the networks, leads to a very concise description of complex func-
tions; (3) the greatly reduced computer overhead eliminates most of the numer-—
ous computerrelated statements necessary in conventional programing; (4) the
language used for describing an entire program allows much greater exploita-
tion of the information capability of strings of symbols.

It should be clear that Fig. 48 is not a flow-chart in the usual sense
of graphical documentation of a program already written in a phrase language,
as Fig, 49 is, Fig. 48 is the abstract machine that solves our problem and
constitutes the original complete program; the equivalen; representations in
the form of strings of symbols are derived afterward from it, as in the exam-
ple shown on page 96,

It is interesting to note that the structure of Fig. 48, in spite of
the fact that it has been introduced as a machine (abstract), turned out to
have less elements mnot existing in the user view of the process (such as in-
dexes and computer related steps) than the structure of Fig. 49, which is in-
troduced as algorithm of the process. Undeoubtedly, the flexibility of the
FSMs makes them closer to our imner pattern of thinking than each single pro-
graming language. 1In using this system, we discuss the problems in terms of
states and transitions, we punch the program cards in terms of those problem
states and transitions, and, with more ease than in conventional programing,
we debug in the same terms. We feel that problems are not deformed by the ma-

chine, but the machine forms iteself after the problems (Schaffner 1972a);
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6.3.2 - Experiments of strategies

The recognition of faint meteors is affected not only by their intemnsity
relative to the ndise intensity, but also by the strategy used for their re~
cognition. If the meteor echoes were constant signals in a white, Gaussian
noisé, a matched-filter receiver would be the optimum system for their detec-
tion. In reality, there are man-made interferences that are more prominent
than the cosmic néise, and the meteor echoes appear as short bursts with an
unpredictable time behavior. Therefore, recognition strategies have to be
devised, in terms of the possible charécteristics of the meteor echoes, and
in terms of the parameters that are to be measured simultanecusly to the
detection of the meteors,

The modeling of the processes in the form of abstract machines facili-
tates significantly the development of such strategies, Moreover, the fact
that the computer performs the processes in the same way as the user con-
ceives them allows an easy verification of the effectiveness of the strategies
by observing the values of the variables involved during the execution of

the processes on the actual signals.
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6.3.3 - Measurement of noise

The detection of faint meteors is on a statistical basis. Essential
for these statistics is a precise knowledge of the characteristics of the
noise present at each moment. Several programs were prepared for recording
statistical parameters on noise and interference, automatically at periodical
intervals of time. ) | .

One program is described here as a simple example of the flexibility and
conciseness of the language. One thousand ndise samples $ are analyzed.
The distribution of their amplitude should be produced, Moreover, the number
of samples that exceed a threshold t, and their mean amplitude should be com-
puted,

Two versions of this program are given: one (Fig. 5la) for a small page
and ailarge recourse to functional memory; and one (Fig, 51b) for a larger
page and a minimum recourse to functionalrmemory. It can be noted in Table
14 that the larger page leads to a reduced description of the program. These
considerations are relevant to the question of the complexity of the prcgrému

able network in a CPL system,

(b)

AF |p
B:D |B
distrib |0

Fig. 51 - State diagrams for measurement of noise characteristics

T A B L E 14 ' program 1020
number number nunber WEmOYY execution j programing
f of of time ‘
language ° . ‘
guag statem./ | symbols cards words per segm. time
instruc.
CPLZ2 {(a) 13 61 1 Tt
(b) 11 59 1 rt
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6.4 TFXPLORATORY PROGRAMS
To explore further the effectiveness of the programing language described
in section 5.2, and the efficiency of the corresponding execution, some pro-

grams for more complex processes are examined in this section,

6.4.,1 — Numerical model of the dynamics of a fluid

In section 6.2.10 preliminary experiments on numerical models were shown.
Numerical models constitute a class of processes in which the spatiotemporal
structure is basic; therefore, we can expect that their modeling in the sub-
stratum of chapter 3 should in general be particularly efficient. In this
context, a program for a two-dimensional model, written in the language of
chapter 5, is shown in this section.

The dynamics of a hypothetical fluid is modeled in the form of an initial-

value problem with boundary conditions. The analytical expressions considered

are
AR JER
X . ha—g-‘j:— +hk%¥ 6.8)

where n, ¥, and v are the variables of the system, and hr the given parameters,

The chosen finite-difference approximation is given by

n+, ook {n® - ) -k (nn - "
1,1 i,1] 1( i,1] i-1,3 2\ 1,] i,i-1

n

n+1

wi,j wg,j - k3(¢§,j - dJI;-1,3') B ku(wz,j - wg,j"l) (6.9)
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with the conventions:

x = 14Ax i = 1,2, ... 1
y = Ay io= 1,2, ...73
t = nAt n o= 1, 2, .. N

and the kr derived from the hr'

To obtain the solution, an abstract machine is conceived, that has a
" page for each point of the two dimensional space of the system (Figure ), a
page for each boundary point, and a control page. The symbols n, Y, and v,
related to the variables of the process, are considered as names for three
variables x.; initial values a, b, and c of these variables are treated as
input data u.; the parameters k also are treated as input data. Horeover,
an additional three variables X, named D, E and F, are used for temporary
purposes. The pages related to the points of the fluid perform an FSM 3 as
described in Figure 33, which implements expressions (6.9); the pages related
to the boundary points perform an FSM 2 which implements a time evolution
of the boundary values; and the control page pefforms an FSM 1 which controls
the work of the entire system. The pages circulate in the structure of Figure
13, with different scanning as indicated in Figure 52.
_ Figuré 53 should convey the level of abstraction of these operational
structures. For instance, FSM 1, which constructs and controls the entire
machine, has four states. State 1 is devoted to ;reating the page array in-
dicated in Figure 52. In this state, function F consists simply in incremen-
ting variables 4 and B by one. Function T is expressed as a self-explanatory
- decision table (the transition from the corner corresponds to the "else"
condition). The routing‘is different for the different transitions and con-
sists of creating pages related to given FSMs and in clearing variable A.
State 2 prescribes a horizontal scanning of the pages, State 3 prescribes
a vertical scanning, and provides for the test of the number of time Steps.
State 4 orders an output record of the coﬁputed quantities, and makes the
pages disappeér {transition to a triangle).

The computation of the variables n,¢, and v at each point (FSM 3) is ob-

tained by means of simple networks of a parallel nature established by the
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user in accordance with expressions (6,9) As an example, in state 1 of FSM 3,
the input set U, consisting of the data a, b, and ¢, is transferred in paral-
lel into the set X, consisting of the variables n, , and v. Tn state 3 of
FSM 3, there is a succession of five networks: the first produces simultane-
ously the accumulation of the original values of D, E, F inton, ¥, v, and

the transfer of the original values of n, ¢, v into D, E, F; the second pro-
duces ap interchange of values between E, E, F and D', E', F', which are vari-

ables that remain in ' of the network during the circulation of the pages;

the third produces the gubtraction of D', E', F', from D, E, F; the fourth
produces the multiplication of D, E, F by the data set kz’ ku’ ke; and the
fifth the accumulation of the present values of D, E , F inton, ¥, v. A
routing prescription sends the present values of n, ¢, v to an output storage.
Obviously, the interest for such constructs is mot to make the user do
what can be provided by a compiler, but to give the user the pcssibility
either of providing what has not been anticipated by the software systems,
or of obtaining specific optimizations. In this example, the aim was to mini-
mize the memory and the execution time. The entire computation is made with

61J + 3(I+J) + 2 memory words. The machine cycles are (2N+2) (I+l) (J+1),

with an average of four to five networks per cycle.
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Fig. 52 - Two-dimensional page structure ' "REPR
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6.4.2 ~ Analysis of echpo-pattern turbulence and movemert

In this example, a hypothetical process for weather radar is used for
exercising the flexibility of the abstract machines as models of intripuing
data manipulations.

The objective of the process here described is to infer on wind distribu-
tion in the atmosphere from the movement of radar echo patterns. Essentially,
profiles of the echo intensity along given lines s are measured at two times
differing by At (Fig. 54); then the two profiles at each line s are cross-cor-
related and the As for which the correlation is maximum is determined. The
ratio As/At is assumed as an estimate of the mean apparent movement of the
scattererers along s, The echo intensity is determined in an extended volume
for adjacent small cells forming a cartesian three~dimensional array, and
cross—correlations are performed along three orthogonal axes for all adjacent
lines of cells. Because the radar scans space in polar ceoordinates, a coor-
dinate conversion is necessary in order to attribute the arriving echoes to
the proper cartesian cells, We are interested in both the local distributien

of movement and the global value for the entire volume.

>~ S

Fig, 54 -~ Echo profiles to be crosscorrelated
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An abstract machine for implementing such a process is derived from the
visualization of it on the part of the user. First we establiéh the data
structure. Three orthogonal coordinates r, t, and h are considered (Fig. 18
in section 5.2.1). Pages CE (cell pageé), organized in a three-dimensional
array, are assigned to the data and computations related to the cells of the
volume considered in the atmosphere. Pages TE (terminal pages) are allocated
at the ends of each row and column of pages CE; thus there are three planes
of pages TE, one for each coordinate. Three pages AV {(average page) are
assigned to the collection of the data from the three planes of TE pages. A
linear array of pages IN (integrating pages) are related to the points of
the present radar sﬁeep. Finally, one page CO (control page) is assigrned the
coordination of the work of all pages. Each type of the above pages implements

a particular FSM, which will be designated with the same aﬁbréviation (Fig. 55).
FSM IN

The task of this FSM is to integrate the echoes emerging from the radar recei-
ver and to send them inte the corresponding CE pages, thus providing the con-~
version from polar to cartesian coordinates, More precisely, we want all the
independent echoes that fall into each cubic cell be integrated in space and
time, and then delivered to the corresponding CE pages.

Such a computation can be tackled in several different ways, Here it is
shown that an abstract machine can perform this task in real time with one
state. The antenna beam crosses several adjacent cells at each time; and
during the movement, the beam abandons certain cells, and intersects new cells.
In accordance, we imply a sequence of pages in number not less than the number
~ of cells thﬁt can be crossed at any time. These pages have operating cyclés
at the rate at which the echoes becbme independent (say, corresponding to the
radar pulse width). In each cycle, in the state of FSM IN (Fig. 55), variable
A accumulates the present content of A'. At the same time, B and E are incre-
mented by one, and D acquires the present coordinates r, t, and h condensed in
one word and varying by one unit at each cell, Variable C holds from some pre-
vious cycle the coordinates of the present cell.

At each cycle, a double test is made. Until ¢ = D (i.e., present coor-
dinates are the same as they were previcusly), the page remains in PN (transi-

tion with circle), and thus A accumulates samples consecutive in range. As
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soon as any one of the:coordinates‘changes, the page enters circulation, and
the present sample in A' will be taken by the following page. Normallf E is
larger than 1, and thus the transition péth that clears E is.takeﬁ,.,At the
next circulation, the page will perform the same way. But the time will come
-when fhat cell is no longer crossed by the antenna beam, and thus at the next
circulation the coordinates will be differént at the first cycle; in this case,
E is no longér 1érger than one, and the transition path with routing is taken.
This routing accumulates the content of A (the accumulated echo) and that of
‘B (the number of accumulations) into the page with coordinates equal to C.
Moreover, the present coordinates (presently in variable D) are transferred
to variable C in the page. |

Depending on the speed of the antenna movement, and on the range, the
beam may cross the‘same cell for such a large number of times, thatrthe accumu-
lation of samples may'eiceed the capacity of A. The variant FSM IN' contains
a further test by which the data are routed also when the number of accumula-

tions in B exceeds a given value.

FSM CE - _
' When in state O, the pages rest 'in the functional memory, capable only of
receiving the data routed by the pages IN. At the end of the first and second
radar scans of the atmosphere, the pages CE are driven to state 1 by the con-
trol page CO, In staté 1 the accumulation in A is divided by the number of
accunulations in B, and the reSult ig transferred into C while the previous
content in C is transferred into D. -

For the execution of the crosscorralatlon, each row and each column of
pages CE is circulated as a separate page segment. In state_Z, A and B ac-
quires the content of C and D, respectively (they correspond to points of the
first and second profiles), and tﬁe product with zero lag is accumulated in
A'. Then, in state 3, the profile in B is shifted k times, and the corres—
ponding products are aCCUmulated in A'., Subsequently, in state 4, the profiles
in C and D are interchanged, and thenh the operations in state 3 are repeated
again k times, Finally, the two profiles résume their original locations in

C and D by stopping over state 4, and then the page segment returns to state O,
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FSM TE

When pages CE of a segment (either a column or a row of the array) trans-
fer to state 2, the page TE of that segment also transfers to state 2 of its
FSM (Fig. 55), In state 2, the accumulation of products in A' (a point of
the crosscorrelation) is transferred into A of the page. Then the page stops
k times over state J before transferring to state 6. In state 3, B and D ac-
quires the new sum of products in A'; and C increments its absolute value by
one. Every time the new sum of products in A' is not larger than the one pre-
gsently in B, the page transfers to state 4, where the substituticen oi new
values in B and D does not occur. In this way, D acquires a measure of the
lag corresponding to the maximum sum of products.

In state 5, variable C is cleared and provided with the negative sign.
Then the operations in states 4 and 3 are repeated. Finally, the page trans-—
fers to state 6, where the present value of D is accumulated in D' and also

routed to the output.

FSM AC

At the end of the crosscorrelations along each axis, the corresponding
page AC is circulated in state 1 in oxrder to acquire the accumulations of lags
in D'. A mean value is obtained by division, and then it is routed to the

output,

FSM CO
The tasks of this FSM, implemented by one page, is to coordinate the work

of the other FSMs and to produce a record of output data, Through states 1 to
4, under the control of signals "start" and "end" indicating the beginning and
the completion of the radar scanning, pages IN and CE are driven to the proper
states in order to produce the two sets of profiles,

After two radar scans, page CO transfer to state 5, where variables A, B,
and C are given three indexes (say values 1, 2, and 3) related to the coordin-
ates r, t, and h of the array of pages CE; moreover the scanning of these coor-
dinates is made starting from zero, Then, in state 6, a page segment along
the coordinate A is put in c¢irculation, and the related pages CE and TE are
driven to their state 2. After 2k circulations, coordinate B is incremented
by one (state 7), and the scanning along coordinate A is repeated (state 6),

After n increments of B (the size of the array), coordinate C is incremented
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by one (state 8}, and thé scanning is‘repeéted:as above, After n increments
alsc of coordinate C, the indexes of the coordinates are rotated one position
(state 9), and all the previous phases are repeated. Aftef tw@ rotations of
the indexes, page CO transfers to state 10 for the control of the recdrdrof .

output data,

~The abstract machine desqriﬁed is in fact the skeleton for & variefy of
possible processes on the movément of a three-dimensionalHdistribution of
scatterers, The fact that'this‘skeleton-has‘the spatiotemporal form depicted
in Fig. 18 that iﬁterplays-with,FSM structures facilitates the'user's develop-
ment of these processes, Afterjthe production of the output data indicated in
the state diagram of Fig. 55, pages CE cqntéin the'originalzintegrated.measufe_
ments, aﬁd,the planes of pages TE coﬁtain a distribution of apparent-movement'

along each axis.

The‘interest of Cafrying out this program lies in the.eiperience we can
obtain concerning the use of abstract machines for modeling, and thus program—
ing, the execution of compiex data manipulations. In the first placé, it has
been possible to devise an execution that processes with a minimum of storage
the data as soon as they are produced‘by the radér. It is very apparent from
Fig. 55 that the possibility of-constructing special processing structures
leads to many shortcuts in the execution phét are not possible with conven-
tional programing languages. In the second place, it has been found that the
development of thé program, its readabilitf,'and'its_extension‘aré easier in
the language of abstract machines than in a phrase programing language.

The programing language most efféctive for this type of prbcess is un-
doubtedly PL-1, 4A program .equivalent to that expréssed in Fig. 55 has been
developed in Pi—l; Stéfting from the solutions already developed fdr~;he
‘abstract machines of Fig. 55, which ‘are applicable only partially te conven-
tional programing, éeveral days were necessary to make the PL-1 program rum
properly, The source listing of this program contains 115 statements, after
exclusion of the input and output parts. The‘flowchart representing the inter-
connections among routines includes 31 boxes., The program is given the comﬁu—
fer through 159 punch cards, and the optimizing compiler produces an object

listing of 859 instructions.
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This program supports with clear evidence the belief that there is a prac-
tical counterpart to the coniectures of von Neumann (pp 60-61) and Burks (sec-
tion 2.3.6). In essence, both suggest that for complex activities, the des-
cription of a special machine that performs the activity is simpler than a
description of the activity itself. The programs shown in this chapter all
indicate that a structural description is more effective than a phrase descrip-
tion. For simple processes, however, we can always suspect that this effective-
ness is merely caused by the presence or absence of specific features in the
language. But as soon as the processes become more complex, the difference in
the complexity of the description appears so basic that we have to consider
uncuestionable that a structural modeling, and thus programing, is more effec-
tive, at least for certain classes of problems, than a modeling, and thus pro-

graming, by means of a phrase language.
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| Chapter 7
Concluding Remarks |

This research study has had two main objectives: 7(1) to clarify the
reasons why a certain programable processing machine, called the CPL system
{section 4.4), has exhibited not only a significant efficiency in the execu-
tion but alsc a concigeness of its machine-language prdgrams that is even
greater than that of corresponding high-level language programs, to assess
these reasons, to inquire about their possible generality, and to evaluate
advantages and disadvantages in respect to other approaches; and {(2) to ex~—
plore the possible applicability of this approach in fields other than the
one for which it was originally devised,

The first objective has been qarried out to a certain extent in the
various chapters of the report, and a summarizing characterization is offered
in'sectionl7.l; _

In regard to the second cobjective, this étudy has'broadenéd the issue,'
" and at the same time has made ménifesf the need for further study and analy-
sis, On the one hand, the clérificatioh made under rask (1) suggests that
a structural language is as fully gemeral as a-phfase language., Moreover,
psyclological analyses indicate that a strﬁctural domain_evokesrmore easily
certain aptitudes of the user, such as familiafity with the spatiotemporal
frame, and geométrical intuition. Furthermore, spatiotempbral constructs
appeaf more directly implementable By hardwarg than are verbal comstructs,
But on the other hand, a large body of knowledge and experience has been
accumulated in the last decades on phrase languages and their implementa-
tions, while almost none is aﬁailéble on structural languages. Under

the limited means and scope of the present contract, only microscopie bits of

- 243 -



7.1

what has been developed in the computer field could be considered, There-
fore, in section 7.2 the particular results obtained are reviewed, and their
possible extrapolation discussed. And in section 7.3, subjects that deserve

further study are suggested.

7.1 THE ESSENCE OF THE APPROACH

The essence of the computer approach analyzed in this report can be
presented from various wviewpoints, In a computer context, one can say that
the structural approach used with analog computers has been brought to a
generality and a flexibility similar to those of the programing language
approach of digital computers. This result has been achieved by means cf a
language that describes the structure of the computer,

Analog computers exhibit great efficiency in execution and a reduced
need for a memory, and similar characteristics are found in the CFL system.
Digiral computers free the user from any hardware contact by means of a

user language, and a similar facility exists also for the CPL system,

In a programing context, one can say that in this approach the user's
images are utilized directly as a form of expression of his intentions.
This is achieved by providing formal means (called a symbolic substratum)
for describing abstract machines in a spatiotemporal frame, In this substra-
tum there is no gap between the mental images of the user and the actual
structures that the computer then will implement.

Often people think of images as vague objects, especially good in an
artistic context, while verbal expressions are considered appropriate in a
rigorous context. In fact, it has been ascertained (see chapter 2) that
images and words are both suitable for both artistic expression and logical
structuring. The development of these means of expression and the training

of their users affect their applicabiliry.

In the CPL system there is one especlally important feature. What is here
called a symbolic substratum is in effect a formal language with broad connota-—
tions that is capable of implementing phrase structure constructs as well as
spatiotemporal constructs. Therefore, when a process, or part of it, is better

expressed in a phrase form, such forms also can be interpreted and implemented.
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In section 2,1 it was repeétedly observed that an alternation of verbal strue-
tures and imagery is a characteristic of mental processeé. We can expect that
the availability of these two complementary forms in- the programing language

should facilitate the process of programiﬁg and lead in general to more effec-

tive programs.

In a formal context, one can say that finite state automata have been
given such a flexibility that they constitute here a convenient 1angﬁage
for modeling, and thus describihg, processes of widely differing natures.

This has been achiéved by assuming a large alphabet, a variety of formulations
for the characterizing functions, and a hierarchical modularity. Because

they have been freed from”the‘réquirementS'of béing interesting'anélytiéal
tools, these automata can be given characteristics enabling them to form
practical models of processes,

From this approach, one can expect that some sort of systematic guidance
can be produced for assisting progfaming,-presently merely empirical.
Significant also is the finding that by programing the structures to be imple-
mented, rather than programing the activity of'structurés'already implemented,
the complexity of programs éppears to be_reduced.. A relaﬁion with the c§n¥
jecture of von Neumann cited in section 2.5.4, and with the Burks' suggestion

(section 2.3.6) is hard to eécape-

The reasons that several viewpoints are necessary for better focalizing
this approach are undoubtedly the same as those that require several view-
points for fdcalizing the notion of automaton. The issue is the communica~
Fion between man and pro;essing machines; therefore, it should not be surpris-
~ ing that the multiplicity of human mental structures is to be considered.

On page 13 the intent was expressed of exploring with a fresh outlook
possible ways of direct qommunication beﬁween man and machine, In the ap-
proach taken,the notion of abstract machine appears to be the crucial point.
The abstract machines considered here are suitable of rigorous treatment,
inasmuch as they can be viewed as automata, This rigorousness ismandatory
for dealing with digital machineé. Abstract machines evoke the imagery sys-—
tem of the mental processes, which permits a more extended utilization of the
user's capabilities. Abstractmachines themselves offer the structures to be
given the physical computer, making possible a direct implementation of the

user's intentions.
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When the flexibility and the abstraction of abstract machines are brought
to a certain degree, it becomes unclear whether they any longer can be consi-
dered machines or whether they should be rather viewed as representation of
thought, We are accustomed to consider verbal expressions as "the" represen-
tation of thought; but as Arbib (1972) suggests, it seems more appropriate to
consider verbal expressions as "samples" of thought. For several classes of
activity, it seems that abstract machines are more appropriate samples of the
user's thought, -

When dealing with a computer, the user's thought must be brought to a
rigorous form. Therefore, the user has to use a language, whatever it is,
that can finally lead to a precise formulation of the desired activity. The
symtax of abstract machines is familiar to all users, regardless of their
spoken language or of their professional training. It is the syntax of the
spatiotemporal frame that is provided to the user in a natural form by his
life experience and sharpened by his geometrical intuition. Moreover, it
geems that a structural language is less ambiguous than a verbal language.

To avoid ambiguity, a verbal language needs to be so rigid that it becomes
a poor language. A structural language seems capable of being at the same

time unambiguous ana rlexible.
7.2 RESULTS OBTAINED AND EXTRAPOLATIONS

In the specific field of real-time data processing in which the CPL 1
machine has been used, and for which the CPL 2 programs have been prepared,
the results are clear, With respect to the conventional computer approach,
significant advantages are simultaneously obtained in all the aspectsinvolved
in the use of a processing machine, as is testified by the examples in chap-
ter 6, It is this multiaspect, always—present facility that has suggested
the extent of the study described in this respect.

Ease of prescribing specific implementations of the processes, a para-
mount requirement in real-time data processing, is very apparent from the flex-
bility and the isomorphism of the symbolic substratum that constitutes the
user's language and the physical substratum that constitutes the computer.

In particular, the facility for handling parallelism has been remarkable,

The language deseribes both actual parallelism of different operations on
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several variables in a page, and virtual paralleiism of many pages performing
independent or concurrent tasks. ' . |

The speed of execution and the reduced need for memory are easily
understandable consaquences of the fact that the machine is structured ad hoc
for each process. But there is also another consequence from this structur-
ing: economy. When the programebility of the hardware reaches the degree im-
plied here, the same hardware can perform the tasks usually accomplished by
several different specialized units, '

. From a practical v1ewpoint, an unusual characteristic of this approach

is the possibility for the user to follow ard understand Easilj all detailed
actions of the computer. The benefits are found especially in debugging and
modifying programs. Moreover; this characteristic permits a truly man-machine
interaction without the need for auxiliary equipment and software systems,

The most striking resulr is perhaps the fact that the machine programs
are typically more concise and more user oriented than the corresponding pro—
grams in high—level languages. 'This outcome is the consequence of structuring

and of the isomorphism between the symbollc and -the physical substrata.

One objective of this study is to inquire to what extent the above advan-
tages can be applicable to other fields. ‘Here, the extrapolations and consi-
derations that can be made at the present state of the study are presented.

The approach described in this report has, from a theoretical point of
view, all the generality required for a general purpose computer, This issue.
was discussed in section 3.4. From a practical viewpoint, in section 4.3,
the favorable characteristics of extended pipelining, flexible parallelism,
and minimization of the addressing function were pointed out, In section 5.4
dlSCuSSlOﬂS and conjectures were made in regard to the characterlstics of the
programing language.

Some points can be a priori established. The execution will typically be
either more efficient than or equal to that of conventional computers, for
the reason that a specialized machine is in general more efficient for a specific
task than is a general-purpose machine. For the processes for which the
structure of present computers is optimum, this structure can be programed in
the CPL system. Certain inefficiencies encountered in present parallel com-

puters are overcome here because the parallelism can be adjusted to various
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degrees., In fact, here, parallelism is a special case of the specialization
of the machine.

In regard to cost, no analysis has been carried out. However, the feel-
ing has developed that, in general, a higher utilization of the hardware
should occur in comparison to present computers. This should lead to a lower

cost, as soon as the new techniques and procedures become '‘mormal.

In section 1,3 several works on computers oriented to programing lang-
uages were cited. These are attempts to make a physical structure implement
verbal structﬁres. It appears that the level at which this implementation
occurs does not notably affect the overall efficiency. In the CPL system,
instead, an attempt is made to make a physical structure implement imagery
structures, The comparison between CPL 1 and CPL 2 programs suggests that
both the ease of programing and the overall efficiency of the execution ap-
pear to increase with the level at which a process 1is modeled in the machine
context,

In regard to programing, we can expect general benefits from a struc-
tural language, because it is a characteristic of the human mind to have typi-
cally greater facility for spatiotemporal frames than for formal systems of
verbal structure, even allowing for specific individual characteristics.

Any assessment of this question will perhaps be long and controversial, as
was the dispute at the beginning of the century over whether thought is
imageless or wordless. But such a possible polemic is of no concern to this
study, for in psychology it has been clarified that thought uses both verbal
and spatiotemporal constructs. And similarly the CPL system is suitable for

both verbal and spatiotemporal descriptions.

The present growing interest in structural representations, both in
the context of theory of computation and in the context of actual communica-
tion with computers, testifies that the present computer approach is too re~
stricted to phrase structures. The crucial point is how to develop a connec-
tion between the compiler approach, with all its well-known achievements, and
new possible structural approaches, The system described in this report
might offer a way for attacking tﬁe problem, In the next section, spe-

cific topics to be studied are suggested.
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7.3 - TOPICS FOR FURTHER STUDY

The introduction of a structural approach in computer programing raises
a number of gquestions that could not be answered within the limited means of
this contract - questions that range from the pufely theoreticai to the spe-
cifieally pragmatic. A few specific topics that appear most deserving of -

attention are listed below.

1. Further analysis of programs

The preparation of the pfbgrams for reai-time processing of radar signals,
samples of which are reported in chapter.6, have contributed much to the under-
standing of a structural appreach, and to the deyeiopment of its programing
"language. Further benefits both to the understanding of the approach and to
the programing language cah-be expected from analysis of other programs in
different fields, Such analyses are fruitful in any of the th;ee ways they can
be carried out: (1) by simple‘preparaﬁion of programs in terms of languages
of different levels: (2) by computer simulation of different CPL systems; and
(3) by actual execution on a CPL machine that can implement a level of suffi-
cient interest.

2. Study of possible connections between the structural approach and the
compiler approach '

The advantages encountered with the structural approach in the field
of applications referred to in chapter 6 are impressive., But no less impres~
sive are the advantages of the compiler aﬁﬁroach'in many other different
fields, Therefore it is natural to ingquire whether the two approaches can be
used simultaneocusly. A programable substratum controlled by finite state
automata is well suited also for implementing the activities performed by
compilers. Moreoever, given the particular flexibility of the FSMs and the
self-development of data structures, we can expect that the compiling activi-
ty would be particularly efficient.

In this context one can analyze the possibility of embedding the execu-
tion with the compilation. The structural approach would be used when appro-
priate, and the compiler approach when needed. 1In this case, there would be
not two distinct phases, the compilation and the execution, but only the exe-

cution, in which, sporadically, different levels of compllation might oecur,
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Given the time sharing structure of the CPL system, such a fragmentétion of
compilation and executien activities should not impair the smoothness of the
execution, Because of the parallelism that can be implemented in the CPL
system, an overall greater efficilency might occur in several cases, More-
over, with real-time compilation, the interaction with the user would be

eased,

3. Study of the optimum characteristics for a programable substratum

One of the most intriguing features of the CPL system is the bypassing
of the compilation by establishing an isomorphism between the symbolic sub-
stratum that constitutes the programing languages mid the physical substratum
that constitutes the computer. To give the user the impression of not being
constrained by the machine, the symbolic substratum should permit the descrip-
tion of any structure that the user is capable of devising. Although such a
goal might appear presumptuous, there is good reason for thinking that mental
processes are based on a finite set of means, from which structures are contin~
uously being buil by grouping and hierarchical concatenation. If a sufficiently
close approximation of these means is given to the symbolic substratum, it
might be possible to implement a substratum — that is, a language - that ap-
pears satlisfactorily universal to the user.

One example of this type of study was given in section 5.1.3. However,
a much larger scope is necessary. In particular, an analysis of primitives
for the data transformation function F would be of great interest. Such a study
should concern itself simultaneously with mathematical formulations, psycho-
logical aspects of process modeling, and also with conveniences of implementa-—
tion. Today the situation is different from that of decades ago. When com-
puters developed, technology was posing the most stringent limitations. Today,
instead, it is knowledge and imagination that 1limit the exploitation of tech-

nical possibilities.

4. Study on the optimum complexity for a programable network

The larger and the richer in features the programable network, the more
likely the user's constructs can be implemented directly; but at the same time
the utilization of the investment in hardware decreases. On the side of the

programs, in a first approximation, the length of the description of a network
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configuration can be related to the logarithm of the number of elements and
options in the network. With the increase in number ofleleﬁents and options,
the number of configurations and states necessary to model a process decreases,
Therefore ﬁe can expect that an increase in the complexity of the programable
network will initially decrease the total size of programs. However, with a
further increase in network complexity, the increased size of the network
descriptions will, statistically, outweigh the reductions in the modeling of
the processes.

‘ It appears, therefore, of interest to analyze optimum complexities of
programable‘networksrin reference to various criteria such as ease of program-

ing, size of programs, efficiency of execution, and cost¥performance ratio,

5, Self-development

As indicated in the.Preface, only a preparatory part of the study of
self-developing computers could be carried out under this contract, Effort
has been concentrated on formulating a'progrémable substratum, In the con-
text of this substratum, self—dévelopment can then be studied with a great
_deal more ease than in the context bf conventional computers, Such a study
would be of interest not 6n1y for application to aftificial intelligence and
robotics, but also for programing per se, A certain degree of self-develop-
ment permits‘an implicit description of'pfOCESses, with consequeﬁtly larger

flexibility of programs, and reduction of their size,

6. Study of implementation of recursion in the CPL system

Recursion can be implemented without the use of a compiler by givingrthe
processes certain self-developing structures, Certain features of the CPL
sysﬁem appear interesting for such implementations. The flexibility of the
transition function, in particular the stopover transitions and the priority,
permits the self-construction of recursive paths, The interplay that is pos-
sible among FSMs, pages, and data structures in the functional memory give

still other possibilities for recursive processes.

7. Study of the effectiveness of the CPL system for list processing

As is well known, certain classes of processing are effectively modeled

as a manipulation of lists, a list being a dynamic path in arrays of formal
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objects. The CPL system is characterized as a programable substratum; in this
substratum, lists of objects can be defined and processed.

There are some features that deserve analysis in the context of list
processing. Segments of pages can be created and disposed during processing.
Pages can be inserted, deleted, and moved to any point of page segments. The
pages are dynamic blocks of data that can vary their size during processing.
The page segments are automatically relocated in the memory at each circula-
tion., The merging of pages and FSMs in the programable network allows the
data structures to be processing structures aiso. Specific words in the pages
can be used for addressing by means of routing. Data can be transferred from
one place to another in the data structures by means of the auxiliary page
array Qﬁ. 5earch can be implemented by one FSM shared by many sequences of
pages. Page segments and data structures in the functional memory may work

concurrently,

After a certain degree of knowledge has been developed at least in some
of the areas indicated above, a more suitable ground will be available for
assessing a structural approach and analyzing the possibility for an enlarged
general programing language that is capable of both verbal and structural

expressions.
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